
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Study of Predicting Fault Prone Software Modules

Ritika Sharma
1
 NehaBudhija

2
 Bhupinder singh

3

 IGCE,Abhipur(Mohali) IGCE,Abhipur(Mohali) IGCE,Abhipur(Mohali)

 Abstract- Most of the current project management software's are utilizing resources on developing areas in

software projects. This is considerably essential in view of the meaningful impact towards time and cost-

effective development. One of the major areas is the fault proneness prediction, which is used to find out the

impact areas by using several approaches, techniques and applications. Software fault proneness application

is an application based on computer aided approach to predict the probability that the software contains

faults. The majority of software faults are present in small number of modules, therefore accurate prediction

of fault-prone modules helps to improve software quality by focusing testing efforts on a subset of modules.

This paper will discuss the detail design of software fault proneness application using the object oriented

approach. Prediction of fault-prone modules provides one way to support software quality engineering

through improved scheduling and project control. The primary goal of our research is to develop and refine

techniques for early prediction of fault-prone modules.

Keywords: Software module, Fault-prone module, Fault detection, Software Metric, software

quality.

I. Introduction

Fault-prone modules prediction is one of the most

traditional and important area in Software

engineering. As the complexity and the constraints

under which the software is developed are increasing

it is difficult to produce software without faults. Such

faulty software classes may increase development

and maintenance costs due to software failures, and

decrease customer’s satisfaction [5]. Effective

prediction of fault prone software classes may enable

software organizations for planning and performing

testing by focusing resources on fault-prone parts of

the design and code. This may result in

Significant improvement in software quality Method

to identify any module that is more likely to contain a

fault, from among all the modules constituting the

software is called fault prone class prediction.

Detection of fault-prone modules has been

widely studied [1,2,3,4].Most of these studies used

some kind of software metrics, such as program

complexity, size of modules, or object-oriented

metrics, and constructed mathematical models to

calculate fault-proneness. Early detection of fault-

prone software components enables verification

experts to concentrate their time and resources on the

problem areas of the software system under

development.

 There are available metrics for predicting

fault prone classes, which may help software

organizations for planning and performing testing

activities. This may be possible due to proper

allocation of resources on fault prone parts of the

design and code of the software. Hence, importance

and usefulness of such metrics is understandable and

important.

II. Objective

Our objective is to predict the error prone files based

on metric data, so we need metric data and bug data.

Source code can be obtained from source forge.net.

The metric data needs to be computed based on the

same method, so we used the metric tool family,

Understand for C and Understand for Java. We

selected the following eight metrics including C&K

object oriented metrics.

• WMC (Weighted Methods per Class)

• DIT (Depth Inheritance Tree)

• NOC (Number of Children)

• CBO (Coupling Between Object Classes)

• RFC (Response for Class)

• LCOM (Lack of Cohesion Metric)

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

• NPM (Number of Public Methods)

• LOC (Line of Code)

III. Software Fault Proneness

Software Fault Proneness is a key factor for

monitoring and controlling the quality of software.

The effectiveness of analysis and testing can be

easily judged by comparing the predicted distribution

of fault (Fault Proneness) and amount of fault found

with testing (Software faultiness).

Fault Proneness of a class predicts the

probability of the presence of faults in that class.

Software analysis and testing are complex and

expensive activities. Estimating and preventing the

faults.

Early and accurately is better approach for

reducing the testing efforts. If fault prone modules

are known in advance, review, analysis and testing

efforts can be concentrated on those modules.

IV. Software Metrics suite uses for fault prediction

We prepared three kinds of metrics suit: history,

complexity, and text filtering. We also prepared well-

known classifiers for prediction methods.

A. History metrics

 FIX (Memories of bug fix) : This metric shows

past existence of a fault in a module in the

nominal scale. If a module had been reported

bugs in the past revisions, FIX for the module

becomes ``yes''; otherwise FIX is “no”.

 LOCadd (Added lines of code from previous

revision): This metric shows the amount of

added code from the previous revision. This

metric is the absolute scale.

 LOCchg (Changed lines of code from previous

revision): This metric shows the amount of

changed code from the previous revision. This

metric is the absolute scale.

B. Complexity metrics

For the object-oriented design, metrics suit is called

“CK metrics”. CK metrics suit includes the following

6 metrics:

 LCOM (Lack of Cohesion on Methods): The

number of pairs of member functions without

shared instance variables, minus the number of

pairs of functions with shared instance variables.

If this subtraction is negative, the metric is set to

zero.

 WMC (Weighted Methods per Class): The

number of methods defined in each class.

 DIT (Depth of Inheritance Tree): The number of

ancestors of a class.

 NOC (Number of Children): The number of

direct descendants for each class.

 CBO (Coupling between Object classes): The

number of classes to which a given class is

coupled.

 RFC (Response for a Class): The number of

methods that can be executed in response to a

message being received by an object of that

class.

C. Text filtering metrics

Pfpf (A probability to be faulty for a module, which is

calculated by a generic text filter) [8, 9]: This metric

is implicitly related to information of frequency of

words in a module. The computation of Pfpf is rather

complex, but the basic idea is simple. Assume that

you have corpuses of faulty and non-faulty modules.

Here, a corpus contains tokens of source code

modules decomposed by the lexical analysis. When

you get a new module to see whether it has a fault or

not, we can determine which corpus is appropriate to

contain the tokens of the new module by the Bayes

theorem. This mechanism is implemented in a

generic text filter. Using such a text filter, we have

developed a tool to calculate Pfpf for a module with

given corpuses of faulty and non-faulty. For our

implementation, Pfpf is calculated by a spam filter

“CRM114”.

V. Conclusion

Much research on detection of fault prone software

modules has been carried out so far. We have used

software complexity metrics and object oriented

metrics to detect fault-prone modules. We tried to

confirm whether or not the metrics could improve the

quality of fault-prone module detection.

The result of experiment shows that use of a certain

convention of metrics can achieve higher accuracy

measures.

VI.References

[1] Briand, L.C., Melo, W.L., Wust, and J.: Assessing the

applicability of fault-proneness models across object oriented

software projects. IEEE Trans. on Software Engineering 28(7)
(2002) 706–720

[2] Khoshgoftaar, T.M., Seliya, and N.: Comparative assessment of
software quality classification techniques: An empirical study.

Empirical Software Engineering 9 (2004) 229–257

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

[3] Bellini, P., Bruno, I., Nesi, P., Rogai, D.: Comparing fault-
proneness estimation models. In: Proc. of 10th IEEE International

Conference on Engineering of Complex Computer Systems. (2005)

205–214

[4] Menzies, T., Greenwald, J., Frank, and A.: Data mining static

code attributes to learn defect predictors. IEEE Trans.on Software
Engineering 33(1) (2007) 2–13

[5] A. Koru, H. Liu, “Building effective defectprediction models in
practice”, IEEE Software, 2005, pp.23–29.

[6]K.K Aggarwal, Y. Singh, A. Kaur, R. Malhotra,“Empirical
Analysis for Investigating the Effect of Object-Oriented Metrics on

Fault Proneness: A Replicated Case Study”, Published online in

Software Process Improvement and Practice,Wiley, 2008.

[7] Mizuno, O., Kikuno, T.: Training on errors experiment to

detect fault-prone software modules by spam filter.In: Proc. of 6th
joint meeting of the European software engineering conference and

the ACM SIGSOFT symposium on the foundations of software

engineering. (2007) 405–414

[8] Mizuno, O., Kikuno, T.: Prediction of fault-prone software

modules using a generic text discriminator. IEICE Trans. on
Information and Systems E91-D (4) (2008) 888–896

[9] Layman, L., Kudrjavets, G., Nagappan, N.: Iterative

identification of fault-prone binaries using in-process metrics. In:

Proc. of 2nd International Conference on Empirical Software
Engineering and Measurement. (2008)206–212

 [10] D.J. Spiegelhalter, N.G. Best, B.P. Carlin, and A. van der

Linde,
“Bayesian Measures of Model Complexity and Fit,” J. Royal
Statistical Soc., vol. 64, no. 3, pp. 583-639, 2002.

[11] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy, “Predicting

Fault Incidence Using Software Change History,” IEEE Trans.
Software Eng., vol. 26, no. 7, pp. 653-661, July 2000.

[12] J. Gras, “End-to-End Defect Modeling,” IEEE Software, vol.

21, no. 5, pp. 98-100, Sept./Oct. 2004.

[13] E.P. Minana and J. Gras, “Improving Fault Prediction Using

Bayesian Networks for the Development of Embedded Software
Applications,” Software Testing, Verification, and Reliability,
vol. 16,no. 3, pp. 157-174, 2006.

[14] H. Abdi, “Partial Least Square Regression (PLS Regression),”

Encyclopedia of Measurement and Statistics, N.J. Salkind, ed.

pp. 740- 744, Sage Publications, 2007.

