
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Improving Comprehensibility of Source code

By Applying Coding Styles

K. Delhi Babu
*

V. Raja sekhar Reddy
Department of CSE Department of CSE

Sree Vidyanikethan Engineering college Sree Vidyanikethan Engineering college

Abstract— Recent studies indicated that computes and shows the similarity between the source code being developed and related high-

level artefacts, such as requirements, and usecases, helps developers to improve the quality of source code identifiers. It has been

implemented as an Eclipse plug-in, called COde COmprehension Nurturant Using Traceability (COCONUT).In this paper, We

presents an approach that applies coding styles to source code for better comprehensibility of source code.

Keywords— Software traceability, source code comprehensibility, source code identifier quality, information retrieval, software

development environments.

I. INTRODUCTION

Recent studies underline the software quality problems by

many approaches and methods, in improving the software

quality for supporting developers. Source code textual

properties, in particular the usage of proper identifiers, are

also an important indicator of software quality. A new

cohesion metric (conceptual cohesion), proposed by Marcus et

al. , that exploits Latent Semantic Indexing (LSI) to compute

the overlap of semantic information in a class expressed in

terms of textual similarity among methods.

Consistent use of identifiers and detailed, meaningful

comments are two factors that can affect source code

maintainability and comprehensibility.

For example, using a non meaningful term referring to a

concept or using a different term to refer the same concept

may increase the burden of program comprehensibility. And

this also leads to error prone because there is a mismatch

between the mental model of the developer and intended

meaning of the term.

Similarity is an indicator of the quality of source code

comments and identifiers between high-level artefacts and the

source code. Similarity can be measured by using IR

techniques in traceability recovery between text contained in

the source code and the domain term contained in high-level

software artifacts and suggests that these techniques can also

be used to improve identifiers and comments during software

development and increase such similarity.

The IR based approach is based on the conjecture—

discussed in previous literature [1], [2] and also assumed by

traceability recovery approaches—that the similarity is an

indicator of the quality of source code comments and

identifiers between high-level artifacts and the source code.

In this paper, we demonstrate applying coding styles

through SmartFormatter, which implements the proposed

approach that learns the coding styles from existing source

code and apply these rules to the code under development.

This is paper also describes about COde COmprehension

Nurturant Using Traceability (COCONUT), which is an

Eclipse plug-in. The COCONUT plug-in computes and shows

the similarity between the source code being developed and

related high-level artifacts.

This paper extends a previous paper [3]. The paper is

structured as follows: After a discussion of IR-Based

Traceability Recovery Approach in Section II, Section III

provides information about Improving Source Code Lexicon

Through COCONUT, Section IV present the proposed

approach, Applying Coding Styles, and section V concludes

this paper.

II. IR BASED TRACEABILITY RECOVERY APPROACH

Information Retrieval is the area of study concerned with

searching for documents, for information with in documents,

and for metadata about documents, as well as that of searching

structured storage, relational databases, and the World Wide

Web. IR is the interdisciplinary, based on computer science,

library system, information science, physics and statistics.

Traceability is the mechanism that allows to create links

between and with in software artefacts. Traceability links

between software artifacts have to be identified and

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

maintained during software development and maintenance. It

is time consuming process for software developers. So, they

need methods and tools for handling traceability links. IR-

based methods recover traceability links on the basis of the

similarity between the text contained in the software artifacts.

The key idea behind such methods is that most of the software

documentation is text based or contains textual descriptions,

and that programmers use meaningful domain terms to define

source code identifiers.

IR methods, includes probabilistic model, Vector Space

Models and Latent Semantic Indexing, have also been used to

recover traceability between requirements, requirements and

design artifacts, and requirements and design documents. In

particular, if the source code does not have high similarity

with the related high-level artifacts, the quality of source code

identifiers or comments is likely to be poor, and this can

potentially affect source code understandability and

maintainability.

III. IMPROVING SOURCE CODE LEXICON THROUGH COCONUT

This section describes an approach that improves the

quality of source code lexicon under development of software.

This approach is based on the conjecture that developers are

induced to make the identifiers of source code more consistent

with the terms in the high level artifacts or to better comment

the source code if the software development environment

provides information about the textual similarity between the

source code being written and the related high-level artifacts.

The information about high level artifacts, for e.g.,

requirements, module specifications, and use cases, is

available during software development.

This approach has been implemented in COCONUT, which

is a plug-in for the Eclipse Integrated Development

Environment. The COCONUT plug-in works with the Java

Development Tool. The Plug-in organized in two different

tabs, namely, Similarity and Identifiers. The Similarity tab

provides information about the similarity between the source

code being written related high level artifacts, while the

Identifiers tab suggests appropriate identifiers to be used in

the source code under development. The COCONUT plug-in

have the following functionalities.

1) Visualization of the similarity level: Information about

the similarity level between the source code under

development and related high level artifacts shows as table by

the similarity tab. The first column of the table contains a

check box that indicates whether the artifact has to be selected

or not and traced onto the source code under development.

The second column contains the description of the high-level

artifacts, and the third column shows the similarity between

the high level artifact and the source code being written. The

third column represents the similarity level for the selected

high level artifacts.

Similarity represents textual similarity between the source

code under development and related high level artifacts.

Similarity will be low if there is meaningless identifiers and

non related identifiers. Similarity will be high if there is

meaningful identifiers and related identifiers. Low similarity

represents the comprehensibility of source code is complex

where as high similarity represents the comprehensibility of

source code is good. Source code comprehensibility

influences the source code quality.

The following figure shows the similarity level in the

Eclipse IDE using COCONUT.

Fig1. The COCONUT view in the Eclipse IDE:

 Visualization of similarity level

2) Suggestion of source code identifiers: The tab

Identifiers of the COCONUT view shows a sorted list of

candidate identifiers extracted from the related high-level

artefacts (selecting in the tab Similarity) and containing a

given substring (see Figure 2). To give suggestion by

COCONUT the programmer has two possibilities: first, the

programmer selects the menu item Get suggestions of the pop-

up menu activated on a selected substring into the source code

under development, or second the programmer inserts the

substring in the appropriate field of the tab Identifiers and

clicks on the button Suggest. The programmer can select the

most appropriate identifiers double clicking on it and it will be

automatically inserted into the source code. The following

figure shows the candidate identifier suggestion by the

COCONUT Eclipse plug-in.

Fig2. The COCONUT view in the Eclipse IDE :

Candidate identifier suggestion for source code

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

IV. APPLYING CODING STYLES

This section describes the proposed approach by using

SmartFormatter. The SmartFormatter is a tool that allows

programmers to learn coding style rules from existing source

code, and apply these rules to the code under development.

The format of the source code, style of the source code, and

identifiers quality are important aspects that influence

program understandings and maintenance. Software

comprehensibility is also affected by the availability of proper

analysis and design documentation, and the existence of

traceability links between source code being written and high-

level artefacts.

This tool explanation proposes an Eclipse plugin that learns

from existing source code (i) the indentation style, (ii) the

conventions used to name different kind of identifiers, and (iii)

how and where source code comments are used. After the

learning phase, the plugin is able to apply the learned

indentation style, to highlight identifiers that violate naming

conventions, and the lack of comments in some portions of the

source code.

While many tools, including the Eclipse platform, allow for

automatic source code indentation, our plugin SmartFormatter

differs in that it allows for learning an indentation style — that

can be different from the commonly adopted one — from the

existing source code and consistently format the code under

development.

Smart Formatter analyzes source code quality from three

different points of view: (i) the indentation style, (ii) the

naming convention of identifiers, and (iii) the comment usage

and frequency.

The indentation style is learned by analyzing, for each

grammar rule, the relative position of each terminal or

nonterminal composing the rule with respect to the previous

token. The indentation rule is obtained by applying descriptive

statistics (average or median) over the collected positions for

each instance of the grammar rule.

For the identifiers, the tool learns the style for different

identifier categories, i.e., class and interface names, instance

variables, method names, parameters, local variables, and

constants. The tool attempts to infer, for each category: (i) the

identifier prefix, if it is used; (ii) a separator (e.g., camel case

or a special character); and (iii) by using the Word-Net1

lexical database, whether the first word of the identifier

(excluding the prefix) is a noun, a verb, an adjective, or an

adverb. Also in this case, the inference is done by statistically

analyzing characteristics of identifiers belonging to the same

category. A naming convention, i.e., the presence of a prefix,

of a separator or the lexical category of the first word, is

learned if it occurs over a given percentage (threshold) of the

identifiers belonging to that category.

For the comments, the tool analyzes the comment density

and highlight source code files having a comment density

below a given percentage of the comment density distribution.

The following figure shows an example of Smart Formatter

usage. In this example the tool is able to learn that method

parameters use the prefix par, the camel case separator, and

the first word should be a verb. For the method names it learns

the use of to prefix, the camel case separator and that the first

word is a noun. A warning message indicates violations from

the rules learned by the tool.

Figure 3. Smart Formatter: violation of naming

conventions

V. Conclusion

The paper proposed a novel approach to help developers

improve the comprehensibility of source code. In particular,

our approach applies styles to the code, that learns style rules

from existing source code, and apply these rules to the code

under development.

REFERENCES

[1] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation of Object-

Oriented Design Metrics as Quality Indicators,” IEEE Trans. Software

Eng., vol. 22, no. 10, pp. 751-761, Oct. 1996.
[2] T. Gyimo´thy, R. Ferenc, and I. Siket, “Empirical Validation of Object-

Oriented Metrics on Open Source Software for Fault Prediction,”

IEEE Trans. Software Eng., vol. 31, no. 10, pp. 897- 910, Oct. 2005.
[3] M Andrea De Lucia, Senior Member, IEEE, Massimiliano Di Penta,

Member, IEEE, and Rocco Oliveto, Member, IEEE ,” Improving

Source Code Lexicon via Traceability and Information Retrieval” ,
IEEE Trans. Software Eng., vol. 37, no. 2, March/April 2011

[4] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To CamelCase or

under Score,” Proc. 17th IEEE Int’l Conf. Program Comprehension,
2009.

[5] A. Marcus and J.I. Maletic, “Recovering Documentation-to- Source-
Code Traceability Links Using Latent Semantic Indexing,” Proc. 25th

Int’l Conf. Software Eng., pp. 125-135, 2003.

[6] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering
Traceability Links in Software Artefact Management Systems Using

Information Retrieval Methods,” ACM Trans. Software Eng. and

Methodology, vol. 16, no. 4, 2007.
[7] Antoniol, G. Casazza, and A. Cimitile, “Traceability Recovery by

Modelling Programmer Behaviour,” Proc. Seventh Working Conf.

Reverse Eng., pp. 240-247, 2000.
[8] S. Haiduc and A. Marcus, “On the Use of Domain Terms in Source

Code,” Proc. 16th IEEE Int’l Conf. Program Comprehension, pp. 113-

122, 2008.

