
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Quality Prediction in Object Oriented System by Using

ANN: A Brief Survey
Yajnaseni Dash*,Sanjay Kumar Dubey

Department of Computer Science & Engineering,

Amity School of Engineering & Technology,

Amity University

Abstract- At present quality of software systems is a major issue, still well defined criteria to measure it needs to be established. The

object-oriented (OO) systems, which is different from procedural paradigm requires valid and effective metrics to assess quality of

the software. There is considerable research interest in developing and applying sophisticated techniques to construct models for

estimation. The different soft computing techniques such as Artificial Neural Networks (ANN), fuzzy inference systems and adaptive

neuro-fuzzy inference systems are available for the prediction purpose. However among these techniques, ANN possesses the

advantages of predicting software quality accurately and identifies the defects by efficient discovery mechanisms. This paper aims to

survey various research methodologies proposed to predict quality of OO metrics by using neural network approach.

Keywords— software quality, maintainability, object oriented, cost estimation, artificial neural network

I. INTRODUCTION

Currently software quality is a major factor of concern.

The growing research activity in software quality leads to

innovation of novel techniques, to predict its attributes.

Maintainability is an important quality attribute and a difficult

concept as it involves a number of measurements. OO metrics

are used in quality estimation. However quality estimation

means estimating maintainability or reliability of software.

Software reliability is a valuable ingredient to make the

system work properly without a fail [1]. As the OO system

uses a huge amount of small methods, it is time consuming,

error prone and has a distinctive maintenance problem [2].

ANN is one such technique which involves a series of steps

for the computation of maintainability effort. As the

traditional computers are not excellent to interact because of

the noised data, immense parallelism, fault tolerant, and

failure to adapt to certain circumstance, so ANN provides a

better option for handling software quality. The neural

network system also helps us when we are unable to devise an

algorithmic elucidation. The application of ANN for software

quality prediction using object-oriented metrics is focused in

this paper.

II. NEURAL NETWORK

The Neural network is a network of interconnected neurons

where information propagation occurs by firing electrical

pulses via its connections. During the lifetime of a neuron, the

connections or weights need to be adjusted. Similarly the

quantity of incoming pulses which required in activating a

neuron is changed. This is the behavioural attributes that lets

the NN to learn. There are three basic learning algorithms in

neural networks namely supervised learning, unsupervised

learning and reinforced learning. Supervised learning is most

commonly used and also called as learning with a teacher. It is

applied when the target value is known and associated with

each input in the training set.

A. History of neural network

An ANN is an information processing paradigm that is an

emulation of biological neural system. A trained neural

network can be thought of as an expert in the category of

information it has been given to analyse.

The first essential model of neural network was proposed

by McCulloch and Pitts [3]. It is a computing model of

activities of nervous system and acts as a binary device where

every neuron has predetermined threshold logic. Various

researchers (e.g. Jhon von Neumann, Marvin Minsky, Frank

Rosenblatt) worked on this model.

Hebb [4] described in his standard book ―The Organization

of Behaviour‖, the proper interconnection and self

organization of neurons. The existing path which lies between

the neurons strengthens the connections. As an enormous

number of simple neurons embedded in an interactive nervous

system, it is promising to provide computational power for

extremely complicated information processing. The basic

learning rule in neural network literature is Hebb‘s law. The

perceptron model was developed by Rosenblatt [5] which

follows perceptron learning law. ADALINE (Adaptive Linear

Element) for computing element and LMS (Least mean square)

learning algorithms explained by Windrows and hoff [6] for

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

adjusting the weights of an ADALINE model. Rumelhart and

McClelland [7] illustrated the weight of multilayer feed

forward neurons can be adjusted probably in a logical

approach by mapping them implicitly in a set of input and

output pattern pairs for learning purposes. This act of learning

is named as generalized delta rule or error back propagation

rule. A marvellous outline of ANN was suggested by Cheng

and Titterington [8] and Warner and Mishra [9]. Zang et al.

[10] provided the broad-spectrum procedures for network

modelling for the use of forecasting purpose by using

statistical techniques. The performance of multilayer

perceptron and linear regression models for the purpose of

prediction of quality was also compared. There are various

commercial and free software are available which has been

made for the prediction of faults in the neural networks.

B. Neural Network Architecture

Neural network architecture refers to the types of

interconnections between neurons. A network is said to be

fully connected if the output from a neuron is connected to

every other neuron in the next layer [11].

Fig 1 A sample architecture of ANN

There are three layers in an ANN such as input layer,

hidden layer and output layer as shown in Fig 1.

1) Input Layer: This layer comprises of the input units

which symbolizes the unrefined information provided for the

network.

2) Hidden Layer: This layer is represented by hidden units

which are influenced by the behaviour of the input units and

the weights that connect these input and the hidden units.

3) Output Layer: The output unit‘s behaviour is dependent

on the specificity of the hidden units and the weights

connecting the hidden and output units.

Generally the ANN adjusts the values of the weights to

produce a specific target output from a particular input. Then

it compares the output with the target till a match between the

target and the output is found. A neural network can be trained

to do a specific function only by taking several such input or

target pairs into consideration.

C. Connection structures of neural network

A neural network comprises the neuron and weight

building blocks. The behaviour of the network depends

largely on the interaction between these building blocks.

There are four types of weighted connections namely feed

forward, feedback, lateral, and time-delayed connections [12-

13].

1) Feed forward connections: For all the neural models,

data from neurons of a lower layer are propagated forward to

neurons of an upper layer via feed forward connections

networks. It is a one way communication process where the

signal flows from input to output. Multilayer feed forward

network is also known as multilayer perceptron.

2) Feedback Connections: Feedback networks bring data from

neurons of an upper layer back to neurons of a lower layer. It

is a two way communication process where signal flows in a

bidirectional manner. Symmetric recurrent neural network are

also known as attractor or hopfield neural networks.

3) Lateral Connections: One typical example of a lateral

network is the winners-takes-all circuit, which serves the

important role of selecting the winner. In the feature map

example, by allowing neurons to interact via the lateral

network, a certain topological ordering relationship can be

preserved.

4) Time-delayed Connections: Delay elements may be

incorporated into the connections to yield temporal dynamics

models. They are more suitable for temporal pattern

recognitions.

The synaptic connections may be fully or locally

interconnected. Also, a neural network may be either a single

layer feedback model or a multilayer feed-forward model. It is

possible to cascade several single layer feedback neural nets

to form a larger net.

III. ANALYSIS OF NNS IN SOFTWARE COST

ESTIMATION

Computation of software effort is a challenging task as the

raw data available during initial parts of project development

are inconsistent, haphazard and incomplete. All the estimation

models are greatly used to predict the software effort based on

the mathematical formula of effort such as, effort = α × size β.

Besides this, various techniques like ANN, analogy based

reasoning, regression trees, rule based induction models are

also considered for the estimation of software effort. Idri et al.

Hidden Layer
O

u
tp

u
t

Compare

Adjust

Weights

T
arg

et

Output Layer Input Layer

In
p
u

t

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

(2002) explored cost estimation models based on ANN. They

had used feed forward multilayer perceptron as architecture,

back-propagation as learning algorithm and selected sigmoid

function as the activation function of ANN. Various studies

has been done to estimate software effort accurately by

applying NN approach. Prasad et al. [15] compared software

effort estimation by using radial basis and generalized

regression neural networks and found that radial basis neural

network is more suitable.

A. Advantages and disadvantages

Use of ANN for prediction of software effort possesses

several advantages; still there are causes of not preferring the

ANN technique for software cost estimation. Some of these

are presented in Table 1.

TABLE I

PROS AND CONS OF ANN IN EFFORT PREDICTION

S.

No.

Advantages Disadvantages

1 Software development is

incessantly emerging

process. ‗Learning from

the past situations‘ is the

most important criteria of

ANN, which acts like a

path finder for future

development of software.

NN approach is just as like as

the black box technique where

we are unable to understand

the internal structure of the

network.

2 It is applicable for

developing efficient

algorithms in the fields

where little knowledge is

available.

It can solve problems

comprising high complexity

such as classification and

categorization type of

problems. However in case of

cost estimation generalization

is taken into consideration

rather than classification.

3 It can derive precious

information and

regularities from large

databases inherently.

No guidelines are available to

construct the NN topologies.

4 It can work efficiently

where large numbers of

variables are present and

the conditions are changing

frequently.

Decision making in ANN is a

difficult task, still it is used by

researchers for its learning

mechanism.

5 ANN can correlate

composite relationship

between dependent

variable (e. g. maintenance

effort) and independent

variable (e. g. software

metrics).

IV. LITERATURE SURVEY

Since the last decade a lot of object-oriented metrics have

been proposed. These metrics can be employed to obtain

assurances about software quality by the usage of prediction

models. Maintainability is characteristically measured as

change effort which can either be the average effort for

making a change to a class, or the overall effort used on

changing a class.

In the literature, a number of metrics suggested to

emphasize on the quality of object-oriented (OO) design by

various researchers. To capture the distinctive facet of OO

design, various metrics designed which estimate the quality of

the software. These metrics are very fast in assessing the

bulky software with little maintenance cost and can be used in

earlier phases of software development. However it is

necessary to know the metrics that are valuable in capturing

significant quality attributes, e.g. effort, productivity, fault-

proneness and evaluation of maintainability. The relation

between maintainability and metrics can be discovered by

using two techniques; either objective or subjective. The

metrics theoretically and empirically validated according to

the previous studies which evaluates the impact of the metrics

on maintainability. Then after predictive models are

constructed using ANN like soft computing techniques to

estimate the quality attributes of the software system.

OO methodology has been enormously utilized in software

engineering. As its use increases rapidly, the current

applications need to be enhanced for the further development

process. Li and Henry [16] have constructed a prediction

model integrating ten object oriented metrics with the help of

the statistical analyses technique. The result of their study has

established a strong relationship between metrics and

maintenance effort in OO systems. Basili et al. [17] obtained

that the Chidamber and Kamerer metrics were associated with

fault proneness. It was based on a study of eight medium-

sized systems devised by students. Khoshgaftaar et al. [18]

introduced prediction of software quality by the use of the

neural networks as a tool. A large telecommunications system

has been presented by them which classify the modules as

either fault prone or not fault prone. They had made a

comparison between the ANN model and a non-parametric

discriminate model which shows that the ANN model had

better predictive accuracy than the other one. Fenton and Neil

[19] evaluated various software defect prediction models, size

and complexity metrics to predict defects. They disagree on

the theory of ―software decomposition‖ in order to test

hypotheses about defect introduction and to help for

construction of an improved science of software engineering.

They made comparison of fault-proneness estimation models

and concluded that software quality is a vital prerequisite in

the system development.

Giovanni [20] correlated a set of static metrics and software

fault-proneness. Statics metrics statically computed on the

source code (e.g. Mccabe‘s cyclomatic complexity) whereas

dynamic metrics measure thoroughness of testing (e.g.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

structural and dataflow coverage). Such metrics partially

influences the software fault- proneness and provides limited

support for adjusting the testing process. Khoshgoftaar et al.

[21] demonstrated a case study of real time avionics software

that could predict the testability of each module by doing

static measurements of source code. They observed that ANN

is an ensuring technique for constructing predictive models, as

they are capable of modelling nonlinear relationships. Emam

et al. [22] have constructed a model to predict which classes

in a future release of a commercial Java application will be

faulty. The model was then validated on a subsequent release

of the same application. Their results indicated that the

prediction model had a high accuracy. Fioravanti and Nesi [23]

have extracted over 200 different OO metrics to identify a

suitable model for detecting fault-proneness of classes. They

concluded that only little of them were appropriate for

identifying fault-prone classes. Genero et al. [24] have

presented a set of metrics to measure the structural complexity

of UML class diagrams and to use them for predicting their

maintainability. This will be correlated with object oriented

information system maintainability to a great extent. Briand et

al. [25] investigated the relationship between OO metrics and

the probability of fault detection in system classes empirically.

They studied a set of OO metrics in terms of their

effectiveness in predicting fault-proneness and empirically

validated these metrics as an important software quality

indicator. Validation is carried out by them using two kinds of

data analysis techniques such as regression analysis and

discriminate analysis. They researched about the relationships

between existing OO coupling, cohesion, inheritance

measures and the probability of fault detection in system

classes during testing through empirical observations. Their

univariate analysis has shown that many coupling and

inheritance measures are strongly related to the probability of

fault detection in a class. Their multivariate analysis results

showed that by using some of the coupling and inheritance

measures, very accurate models could be derived to predict in

which classes most of the faults actually lie.

Quah and Thwin [26] predicted the number of faults in a

particular class by using a multiple regression model and a

neural network model. They have used three industrial real-

time subsystems data and found that neural network model

can predict more accurately than regression model. Yu et al.

[27] choose eight metrics to examine the relationship between

these and the fault-proneness of the software systems. The

subject system was the client side of a large network service

management system developed by three professional software

engineers. This application was written in Java comprising of

123 classes and about 34,000 lines of code. First of all, they

tested the correlation between the metrics and got four

extremely correlated subsets. Subsequently, they employed

univariate analysis to specify the metrics that could detect

faults and the one which could not. Menzies et al. [28] have

compared various methods such as decision trees, naïve Bayes,

and 1-rule classifier by using the NASA software defect data.

Mahaweerawat [29] proposed fault prediction model based on

supervised learning using multilayer perceptron network and

the results are analysed in terms of classification. Faulty

classes are again analysed and classified according to the

particular fault.

Gyimothy et al. [30] has done empirical validation of

Chidamber and Kamerer [31] metrics on open source software

to predict the fault. Regression (linear and logistic regression)

and machine learning methods (neural network and decision

tree) were employed by them to construct models. Bellini [32]

compared fault-proneness estimation models by applying the

logistic regression and the discriminant analyses

methodologies. They have used various datasets according to

the requirement. Tian and Noore [33] applied evolutionary

neural network modelling to predict software cumulative

failure time. Thwin and Quah [34] applied neural networks for

software quality prediction. They have taken OO metrics as

independent variable and used two neural network models

namely ward neural network and general regression neural

network (GRNN). They concluded that GRNN network model

can predict more accurately than Ward network model.

Yan Ma [35] explored exact prediction of fault prone

modules in the software improvement process enables

effective invention and recognition of defects. Sandhu et al.

[36] compared all the classes of WEKA‘s machine learning

algorithms and experimented that Logistic Model Trees

algorithm is most excellent prediction techniques among other

classes of machine learning algorithms in prediction of

severity of faults in software systems. Hu and Zhong [37]

proposed a model to predict software module risk based on

neural network. Thy applied the learning vector quantization

network for prediction of the software quality. Zhao and

Zhong et al [38] suggested a software fault-proneness

prediction model by support vector machine and the

Chidamber-Kemerer (C&K) object-oriented metrics. Yogesh

et al. [39] predicted the testing effort of software quality

attribute by applying ANN method and taking CK‘s OO

metrics as the independent variable. They used the public

domain data of NASA and estimated the testing effort.

Sandhu et al. [40] had explored the impact of faults in OO

software modules. The primary objectives of their work are

discovering the structural code and design attributes of

software systems and getting the best algorithms which can be

employed to model impact of faults in OO software. They also

predicted the impact of the defect on the overall environment

in function based systems. They observed that neuro-fuzzy

based predictor models are the best one. They used public

domain defect dataset of NASA and coded it in C

programming language.

Arvindar et al. [41] predicted the software maintenance

effort by applying various soft computing approaches. They

used the data of two commercial software products and

observed that these soft computing techniques are more useful

for the construction of accurate models to predict the

maintenance effort. They have chosen maintenance effort as

dependent variable and eight OO metrics as independent

variable. Ratra et al. [42] compared early prediction of fault

prone modules in software systems by using clustering and

neural network techniques. They measured the performance of

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

the two approaches based on their accuracy, the mean absolute

error and root mean square error values. They found that the

performance of neural network approach is much better than

clustering based approach.

Several measures have been proposed by researchers to

capture the quality of OO code and design and used for

identifying fault-proneness of classes. Various investigations

also had made to predict software quality by using statistical

methods. ANN has seen an explosion of interest over the

years, and is being successfully applied across a range of

problem domains such as finance, medicine, engineering,

geology and physics. Indeed, if there are problems of

prediction, classification or control, neural networks will be an

efficient asset to solve them.

V. CONCLUSIONS

Researchers acknowledged that software quality prediction

has a significant role in designing the object oriented software.

To get over the issues of predicting maintainability in OO

system, suitable and efficient metrics must be defined and

chosen. The application of artificial neural networks will be an

efficient method to estimate maintainability in object oriented

system. Among the different soft computing techniques ANN

possesses advantages of predicting the software maintenance

effort by minimal computation. It can be used as a predictive

model because of its incredible representation techniques and

ability to perform complicated functions. In addition, it is

among one of the emerging technique in software

development and plays a crucial role in predicting software

quality.

REFERENCES

[1] M. R. Lyu, Handbook of software Reliability Engineering

IEEE Computer Society Press, McGraw Hill, 1996.

[2] R. E. Johnson and B. Foote Designing Reusable Classes.

Journal of Object-Oriented Programming, vol. 1, no. 2, pp.

22-35, 1988.
[3] W.S. McCulloch and W. Pitts. A Logical Calculus of the Ideas

Immanent in Nervous Activity. Bulletin of Mathematical
Biophysics, Vol 5, pp 115-133, 1943. Reprinted in Anderson &

Rosenfeld, pp 18-28,1988.

[4] D.O. Hebb, The organization of behaviour – a neurophysiological
theory. Wiley, New York, 1949.

[5] F. Rosenblatt, The Perception: A Probabilistic Model for

Information Storage and Organization in the Brain, Psychological
Review, ISSN 0033-295X, Vol. 65, No. 6, pp. 386-408, 1958.

[6] B. Widrow and M.E. Hoff ―Adaptive Switching Circuits,‖ IRE

WESCON Convention Record, New York, pp. 96-104, 1960.
[7] D. E. Rumelhart, and J. L. McClelland, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition,
Volume 1 (Foundations), The MIT Press, ISBN 0-262-68053-x,

Cambridge, Massachusetts, 1986.

[8] B. Cheng and D.M.. Titterington Neural networks: A review from
a statistical perspective. Statistical Science, vol 9, pp.2-54. 1994

[9] B. Warner and M. Misra, ―Understanding neural networks as

statistical tools‖, The American Statistician, vol 50, issue 4,
pp.284-293, 1996.

[10] G.P. Zhang, E.P. Patuwo and M.Y. Hu, ―Forecasting with artificial

neural networks: The state of the art‖, International Journal of
Forecasting, vol 14, pp. 35-62, 1998.

[11] F. Nielsen, Neural Networks – algorithms and applications. 2001

Available at: http://www.glyn.dk/download/Synopsis.pdf.

Accessed on Dec.2011.

[12] Available: at:

http://www.gc.ssr.upm.es/inves/neural/ann1/concepts/concepts.ht

m. Accessed on Dec.2011.
[13] Available: Wikipedia (2011), www. wikipedia.org, 2011

[14] A. Idri, T.M. Khoshgoftaar, A. Abran, Can neural networks be

easily interpreted in software cost estimation?, in Proceedings
of IEEE International Conference on Fuzzy Systems, pp.1162–

1167. 2002.
[15] P.V.G.D Prasad Reddy, K.R. Sudha, S. P. Rama and S.N.S.V.S.C

Ramesh, ―Software Effort Estimation using Radial Basis and

Generalized Regression NeuralNetworks‖, Journal Of Computing,
Volume 2, Issue 5, May 2010

[16] W. Li and S. Henry, ―Object-Oriented Metrics that Predict

Maintainability‖, Journal of Systems and Software, vol 23,

no.2, pp.111-122, 1993.
[17] V. Basili, L.Briand and W. Melo ―A Validation of Object-Oriented

Design Metrics as Quality Indicators‖, IEEE Transactions on
Software Engineering, vol. 22 no.10, pp. 751-761, 1996

[18] T.M. Khoshgaftaar, E.D. Allen, J.P. Hudepohl and S.J. Aud

"Application of neural networks to software quality modeling of a
very large telecommunications system," IEEE Transactions on

Neural Networks, Vol. 8, No. 4, pp. 902--909, 1997.
[19] N. E. Fenton, and M. Neil, (1999), ―A Critique of Software Defect

Prediction Models‖, Bellini, I. Bruno, P. Nesi, D. Rogai,

University of Florence, IEEE Trans. Softw. Engineering, vol. 25,
Issue no. 5, pp. 675-689.

[20] D. Giovanni (2000), ‖Estimating Software Fault-Proneness for

Tuning Testing Activities‖ Proceedings of the 22nd International
Conference on Software Engineering (ICSE2000), Limerick,

Ireland, Jun.2000.

[21] T. M. Khoshgoftaar, E. B. Allen, Zhiwei Xu, ―Predicting
testability of program modules using a neural network‖, In Proc. of

3rd IEEE Symposium on Application-Specific Systems and

Software Engineering Technology, pp.57-62, 2000.
[22] E.L. Emam, W. Melo and C.M. Javam ―The Prediction of Faulty

Classes Using Object-Oriented Design Metrics‖, Journal of

Systems and Software, Elsevier Science, pp. 63-75, 2001.
[23] F. Fioravanti and P. Nesi ―A study on fault-proneness detection of

object-oriented systems‖, Fifth European Conference on Software

Maintenance and Reengineering, pp. 121 –130, 2001.
[24] M. Genero, J. Olivas, M. Piattini and F. Romero ―"Using metrics

to predict OO information systems maintainability", Proceedings.

of the 13th International Conference Advanced Information
Systems Engineering, Interlaken, Switzerland, 2001.

[25] L. Briand, W.L. Melo and J. Wust ―Assessing the applicability of

fault-proneness models across object-oriented software projects‖,
IEEE Transactions on Software Engineering, vol. 28 pp. 706 –720,

2002.

[26] J. T. S. Quah, M. M. T. Thwin, ―Prediction of Software Readiness
Using Neural Network‖, In Proceedings of 1st International

Conference on Information Technology & Applications, Bathurst,

Australia, pp. 2312-2316, 2002.
[27] P. Yu, T. Systa and H. Muller, ―Predicting fault proneness using

OO metrics. An industrial case study‖, Proceedings. of 6th

European Conference on Software Maintenance and
Reengineering, pp. 99 –107, 2002.

[28] T. Menzies, K. Ammar, A. Nikora, and S. Stefano, ―How Simple

is Software Defect Prediction?‖, Journal of Empirical Software

Engineering, Oct.2003.

[29] A. Mahaweerawat, ―Fault-Prediction in object oriented software‘s

using neural network techniques‖, Advanced Virtua and Intelligent
Computing Center (AVIC), Department of Mathematics, Faculty

of Science, Chulalongkorn University, Bangkok, Thailand, pp.1-8,

2004.
[30] T. Gyimothy, R. Ferenc and I. Siket, ―Empirical validation of

object oriented metrics on open source software for fault

prediction‖, IEEE Trans. Software Engineering, vol. 31, Issue 10,
pp.897 – 910, Oct.2005.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

[31] S. R. Chidamber and C. F. Kemerer, ―A metrics suite for

object oriented design.‖ IEEE Trans. Software Eng., vol.

20, no. 6, pp. 476–493, 1994.
[32] P. Bellini, ―Comparing Fault-Proneness Estimation Models‖, 10th

IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS'05), pp. 205-214, 2005.

[33] L. Tian and A. Noore, ―Evolutionary neural network modelling for

software cumulative fault prediction‖, Reliability Engineering &
system safety, vol. 87, pp. 45-51, 2005.

[34] M. M. T. Thwin,T. S. Quah, ―Application of neural networks for

software quality prediction using Object-oriented metrics‖, Journal
of systems and software, Vol.76, No.2, pp.147-156, 2005.

[35] Y. Ma, L. Guo, ―A Statistical Framework for the Prediction of

Fault-Proneness‖, West Virginia University, Morgantown, 2006.
[36] Sandhu, Parvinder Singh, Sunil Kumar and Hardeep Singh,

―Intelligence System for Software Maintenance Severity

Prediction‖, Journal of Computer Science, Vol. 3, issue 5, pp. 281-
288, 2007

[37] Q. Hu and C. Zhong, ―Model of predicting software module risk

based on neural network‖(in Chinese), Computer Engineering and
Applications, Vol.43, No.18, pp.106-110, 2007.

[38] Y. Zhao, C. Zhong, Z. Li, T. Yan, ―Object-Oriented Software

Fault-Proneness Prediction Using Support Vector Machine‖ (in
Chinese), Computer Engineering & Science, Vol.30, No.11,

pp.115-117, 2008.
[39] Y. Singh, A. Kaur, R. Malhotra,‖ Predicting Testing Effort using

Artificial Neural Network,‖ Proceedings of the World Congress on

Engineering and Computer Science, WCECS, San Francisco, USA,
pp. 22 - 24, Oct.2008.

[40] P.S. Sandhu, U. Malhotra, and E. Ardil, ―Predicting the Impact of

the Defect on the Overall Environment in Function Based
Systems‖, World Academy of Science, Engineering and

Technology, 2009

[41] A. Kaur, K. Kaur and R. Malhotra, ―Soft Computing Approaches
for Prediction of Software Maintenance Effort,‖ International

Journal of Computer Applications, Vol. 1, no.16, 2010.

[42] R. Ratra, N.S. Randhawa, P. Kaur, G. Singh,‖ Early Prediction of
Fault Prone Modules using Clustering Based vs. Neural Network

Approach in Software Systems,‖ IJECT Vol. 2, Issue 4, Oct . –Dec.

2011

