
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

A Study of Data Flow Graph Representation Analysis with

Syntax and Semantics

Pushpendra Singh
1
, Devesh Chaurasiya

2
, Ankita Joshi

3
, Kumar Sambhav Pandey

4

Department of Computer Science and Engineering

National Institute of Technology

Hamirpur (H.P.)

Abstract- Flow of data in graphical representation form gives a modern style in presenting the program statements. The syntax and

semantics of data flow graph provides the opportunity to explore their efficiency in field of synthesis and verification of architecture system.

The execution of operations on the nodes takes place through firing rule makes data flow graph reliable in terms of some parallel

execution. This paper presents the data flow graph format on the basis of different nodes used in various loop construct conditions of

program. The semantical analysis of nodes are explained with the help of examples. In the last, this paper also propose an approach for

using dummy node in data flow graph.

Keywords- data flow graph, firing rule, semantics, token.

I. INTRODUCTION

Data flow graph concept gives an idea in presenting the
problems or programs in a graphical representation form. The
programmer wants to show his capability by understanding all
the related information of problems and put his ideas in an
ideal form but sometimes it can’t express and achieve
expected performance in his results. So data flow graphs
provide a representation platform with simple and attractive
interface.

In this paper, semantics and specifications of data flow
graph is presented. Data flow graphs are well known and good
modelling tool for the behavioural specification of a system, as
in ([1], [2]). Data flow graph format having both syntax and
semantics simple interface. Analysis of data flow graph helps
in exploring global information about the manipulation of data
for a procedure or a larger program, as in [3]. It shows the
working, how it manipulates its data in their execution
process.

Data flow programs are represented in the form of graph.
For solving the problems of larger programs data flow graphs
are easily arrangeable. By eliminating the need to manage
parallel execution explicitly, data flow graph representation
exposes the maximum parallelism for given program, as in [4].
Data flow graph only depends on data availability at input and
not preferring the specific order of execution. Token passing
method based semantic used for describing the flow of data
between nodes in data flow graph through their edges between
them. Token is defined as a single data value instance at the
input of a particular node at the time of execution of operation,
as in [5].

II. DATA FLOW GRAPH

The graphical representation form which consists of nodes
and directed arcs called data flow graph. In mathematical
terms we say that, a graph G (V, A), where V= (v1,v2……,vn)
is the set of nodes and A=(a1,a2,……..,am) Є VXV the set of
directed arcs or edges ai=(vj,vk), as in [6]. The nodes represents
instructions and arcs represents the data which will exchange
between these nodes.

The nodes of data flow graph perform operations when the
data value or token available at its input port. The execution of
operation according to the firing rule. Firing rule says that
node only executed when the tokens are available at all input
ports, as in [7]. The process of execution proceed with the
fetching of tokens form the input port and result will be
forwarded through each output port. Every node connected
through one of the node in the network of graph, so producing
node send the data to the consuming node through edges. Data
flow graph follows the partial ordering execution of nodes.
Due to the partial ordering in the data flow graph nodes are not
strictly dependent on each other for their execution of
instruction.

III. SYNTAX AND SEMANTICS

Data flow graph uses different types of nodes for the
synthesis and verification of the programs. The semantics of
data flow graph helps in providing unique degree of freedom.
The programmer uses the simple interface of data flow graph
to produce optimized solution for the given system. The syntax
and semantics are described for different nodes of data flow
graph so that nodes behaves efficiently in various conditions
of program statements. Some of the basic nodes are described
here through which we will construct solution without

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

following any restrict order of execution. The type of nodes
are:

A. Operator nodes

A large number of operation performed on the nodes.
Some of the basic arithmetic operations are +, -, x, *, or
boolean like >, <, =, or , and, or some of the complex
functions, as in [6]. The graph represents in fig.1 shows the
following statements :

int b, x, y, z ;

main ()

{ b= 3*y* y + y + 1; z= x+ b; }

The data flow graph format allow the nesting of graphs
with absorption of results of one node to another node as
input. The operator used in the data flow graph for performing
various operation are not fixed only depends on the input
ports. The input ports defines that how many number of inputs
are using for performing particular execution.

Fig. 1. Data flow graph for b= 3y2+y+1, z= x+b

B. Input –Output nodes

Input and output are the basic node to perform some
logical operation on any node. Input node defined as a nodes
of type input are the only nodes without input ports. Output
node defined as a nodes of type output are the only nodes
without output ports, as in [5]. When the token is available on

each input node then execution of process started and give
accordingly result through its output node.

C. Get- Put nodes

For the complex program representation input and output
nodes are enhanced as get and put node to read and write the
operation on the port. When the interaction through outside
world take place then get and put nodes easily occur inside the
loop. Get and put node easily manage all the inputs and
outputs which are going into charge during the complex
program execution.

D. Branch nodes

Branch node is mainly used for the representation of
conditions occur in the program. When one condition
terminates and control jumps to another condition then branch
node comes in focus in the data flow graph. At particular
branch node, decision will be taken on the basis of control
token value as true or false. The branch node fires its
execution when all its input are available on input port and
result will be forwarded to the output port using the control
token value.

E. Merge nodes

Merge node act as complementary to the branch node in
the data flow graph. Merge node has one important
characteristic which make different from the branch node.
Merge node not follow the firing rule concept in a strict
manner. It execute its operation without availability of all
tokens at its input port, only based on control token value.

Sometimes merge node only passes the value received
from its predecessor to one of its output port. In this case
merge node fires without using the control value only the
token availability on the input port is the main consideration.

The main utilization of branch and merge node for solving
the problems which include like if-then-else or case like
conditions. For clarification of this concept take an example:

 If (m) then

 {

 y = y ;

 x = x + 2 ;

 }

 else

 y = y ++

 x = x - -

The data flow graph of above program is shown in fig. 2

 * *

 3

 +

 1

+

 y
 x

 z b

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Fig. 2. Data flow graph for if- then- else.

F. Exit- entry node

Exit and entry nodes takes the logical idea from branch and
merge node respectively. The working of exit and entry node
in a given program representation uses the similar
functionality as branch and merge node. The token is available
at control input for every entry nodes for the initialization of
execution of process and result is passing through the exit
node. For different values of token at input of entry node the
process is executed repeatedly.

The main focus of entry and exit node to interact with loop
construct problems. The loop programs include like
while…do or for…do are represented by the exit and entry
node in data flow graph. The following example shows the
loop constructs:

 add (int x, int y)

 {

 while (x >= y)

 x= x + y ;

 return (x) ;

 }

The fig.3 shows the graphical representation of this
program:

Fig. 3. Data flow graph for while loop

G. Constant nodes

For providing constant values constant nodes also counted
in these nodes category. In program statements sometimes
only fixed constant data value is passing in various loop
constructs. Constant data value is added at particular condition
for this we specify constant node at that position in the data
flow graph. The main feature about constant node that it has
only one output port. Constant node uses this output port only
for passing the fixed data value on the basis of control value.

Here we can analyse that all the above nodes are basic
nodes, used for the representation of data flow graph . All the
nodes have some semantics which show their efficiency or
usefulness under well defined conditions. Basically all nodes
of data flow graph follow the firing rule for starting their
proper execution. The important feature about data flow graph
is that, at particular time more than one node fires on the basis
of the availability of tokens at input port.

IV. ANALYZING DATA FLOW GRAPH WITH CONTROL

FLOW GRAPH

A possible flow of continuous program statements as basic
blocks are represented with nodes and edges by control flow
graph. Each node is considered as a basic blocks in control
flow graph. Entry block is used for entering of controls and
exit block for leaving the control as result. Control flow graph
dependent on the control flow between the nodes hence it is

 Entry Entry

 Exit Exit

>=

 +

 in in

out

x y

Merge

Merge

Branch

Branch

++ + - -

 y x

 x y

 m

 2

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

control dependent, as in [8]. In control flow graph sequential
ordering occur for the execution of process. Control flow
graph mainly consists of two types of references. These two
references are control flow and data flow. Due to the control
dependency, control flow graph does not explore efficiently
for hardware design implementations.

Data flow graph dependent on the flow of data between the
nodes. In other terms data flow graph is data dependent, as in
[8]. The execution of process follows the partial ordering
between the nodes. Due to partial ordering a large number of
nodes executed at particular time. The execution node only
depends on the resources or data value availability at that time
for the nodes which are ready for execution. The
representation of data flow graph uses some semantics as
different types of nodes in different loop construct conditions.
In this way data flow graph provides better platform for
hardware design implementations.

V. IMPLEMENTATION APPROACH

Dataflow graph uses the different nodes for their

representation by following some syntax and semantics. The

generated graph for given program with the help of these

nodes provides the opportunity to explore our ideas in a new

direction. Data flow graph does not include the control arcs

because it is data dependent. By using this concept from

control flow graph we generate data flow graph by exploring

each basic block of control flow graph. The restriction of using

program counter in control flow graph easily eliminated into

the generated data flow graph. The standardization of

generated data flow graph can be done with the help of using

dummy nodes. Dummy node is a type of additional node for
making equal number inputs and outputs at particular node.

During the splitting of nodes at particular level, the dummy

node plays important role. The implementation of data flow

graph with dummy nodes helps in exploring control flow

graph for architecture synthesis of hardware. In this way

execution takes place in a similar standard manner for each

node in the graph. So, we easily trace out the whole graph

easily and also implement for some hardware designs.

VI. CONCLUSION

Data flow graph provides efficient way to present the given
program in simple graphical manner. The user easily
understand and interact for every possible input and output by
using token based mechanism. Firing rule strategy in data flow
graph increase the certainty of parallel process execution. In
this way data flow graph are highly suitable for synthesis and
verification of the architectural based system. The synthesis
done with help of graphical view of data flow graph provides
many alternative ideas and implementation designs for
particular program in a very simple manner. The partial order
of execution of data flow graph also helps to increase its
flexibility and parallelism factor for particular program.

ACKNOWLEDGMENT

This work was supported in part by Ministry of Human
Resource Development (MHRD) and the Department of
Computer Science and Engineering, N.I.T. Hamirpur (H.P.).

REFERENCES

[1] Davis, A.L. and R.M. Keller, “Data Flow Program Graphs”, IEEE

Computer, vol.15, no. 2, pp. 26-41, February 1982.

[2] K.M Kavi, B.P. Buckles, and U.N. Bhat, “ A Formal Definition of Data

Flow Graph Models”, IEEE Trans. Computer, vol. c-35, no. 11, pp. 940-

948, November 1986.

[3] Steven S. Muchnick, Advanced Compiler Design and Implementation,

Morgan Kaufmann, 1997.

[4] B Lee, A.R. Hurson, “Dataflow Architectures and Multithreading”,

IEEE Computer Society , vol. 27,issue 8, August 1994.

[5] Jos T.J. Van Eijndhoven, L. Stok, “ A Data Flow Graph Exchange

Standard”, Design Automation , Proceedings of the European

Conference, March 1992 .

[6] Gjalt G. de Jong, “Data Flow Graphs: System specification with most

unrestricted semantics”, Design Automation. EDAC., Proceedings of the

European Conference, February 1991.

[7] Arthur H. Veen, “ Dataflow Machine Architecture”, ACM Computing

Surveys (CSUR), vol. 18, issue 4, December 1986.

[8] Gang Quan, “Data Flow Graph Intro,” Maseeh College of Engineering

and Computer Science, Portland State University,

http://web.cecs.pdx.edu/~mperkows/temp/JULY/data-flowgraph. pdf .

[9] S. Amellal, b. Kaminska, “Scheduling of a Control and Data Flow

Graph”, Circuits and Systems, IEEE International Symposium, vol. 3,

May 1993.

[10] G Xue-rong, Z Rong-cai, L lin-sheng, “Communication Optimization

Algorithms based on Extend Data Flow Graph”, Eighth ACIS

International Conference ,vol.3, August 2007

http://www.computer.org/

