
                  Volume 2, Issue 2, February 2012              ISSN: 2277 128X 

International Journal of Advanced Research in 
 Computer Science and Software Engineering 
                                                Research Paper 
                          Available online at: www.ijarcsse.com 

A REVIEW ON QUERY CLUSTERING ALGORITHMS 

FOR SEARCH ENGINE OPTIMIZATION 
Bhupesh Gupta

 1
    Sandip Kumar Goyal

 2   
Ashish Oberoi

3  
  

CSE Deptt., MMUniversity    CSE Deptt., MMUniversity  CSE Deptt., MMUniversity 

Mullana, India     Mullana, India    Mullana, India   
  

      

Abstract — Classification of patterns into groups in unsupervised way represents clustering. Clustering can be done in many ways and 

by researchers in many disciplines, like clustering can be done on the basis of queries submitted to search engine. This paper provides 

an overview of algorithms which are helpful in search engine optimization. The algorithms discuss are BB’s Graph Based Clustering 

Algorithm, Concept Based Clustering Algorithm and Personalized Concept based clustering algorithm. All the algorithm works on 

the basis of precision and recall values, which are helpful in determine the efficiency of search engine queries.  
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I. INTRODUCTION 

 

 Query clustering is a technique for discovering similar 

queries on a search engine. Also it is a class of techniques 

aiming at grouping users’ semantically related, not 

syntactically related, queries in a query repository, which were 

accumulated with the interactions between users and the 

system. The driving force of the development of query 

clustering techniques comes recently from the requirements of 

modern web searching. The three main applications of query 

clustering are detection of frequently asked questions, index 

term selection and query reformulation. The query clustering 

comes out in following types: Content-based Query 

Clustering, Session-based Query Clustering, Graph-based 

Query Clustering, Concept-based Query Clustering and 

Personalized concept based query clustering. 

 

II. RELATED WORK 

 

Query clustering techniques have been developed in 

diversified ways. The very first query clustering technique 

comes from information retrieval studies [1]. Similarity 

between queries was measured based on overlapping 

keywords or phrases in the queries. Each query is represented 

as a keyword vector. Similarity functions such as cosine 

similarity or Jaccard similarity [1] were used to measure the 

distance between two queries. One major limitation of the 

approach is that common keywords also exist in unrelated 

queries. 

 

Wen et al. [2] proposed a clustering algorithm combining both 

query contents and URL clicks. They suggested that two 

queries should be clustered together, if they contain the same 

or similar terms, and lead to the selection of the same 

documents. However, since Web search queries are usually 

short and common clicks on documents are rare (see 

discussion below), Wen et al.’s method may not be effective 

for disambiguating Web queries. In contrast, our approach 

relates the queries with a set of extracted concepts in order to 

identify the precise semantics of the search queries.  

 

Joachims [4] proposed a method which employs preference 

mining and machine learning to model users’clicking and 

browsing behavior. Joachims’ method assumes that a user 

would scan the search result list from top to bottom. If a user 

has skipped a document di at rank i before clicking on 

document dj at rank j, it is assumed that he/she must have scan 

the document di and decided to skip it. Thus, we can conclude 

that the user prefers document dj more than document di (i.e., 

dj <r0 di, where r0 is the user’s preference order of the 

documents in the search result list). 

 

Baeza-Yates et al. [7] proposed a query clustering method that 

groups similar queries according to their semantics. The 

method creates a vector representation Q for query q, and the 

vector Q is composed of terms from the clicked documents of 

q. Cosine similarity is applied to the query vectors to discover 

similar queries. 

 

More recently, Zhang and Nasraoui [10] presented a method 

that discovers similar queries by analyzing users’ sequential 

search behavior. The method assumes that consecutive queries 

submitted by a user are related to each other. The sequential 

search behavior is combined with a traditional content based 
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similarity method to compensate for the high sparsity of real 

query log data. 

On Web search engines, clickthrough data is a kind of implicit 

feedback from users. it is a valuable resource for capturing the 

user’s interest for building personalized Web search systems 

[4]-[6],  [8]-[9], [11]-[15]. Joachims [4] proposed a method 

that employs preference mining and machine learning to re 

rank search results according to user’s personal preferences. 

Later on, Smyth et al. [8] suggested that user search behavior 

is repetitive and regular. They proposed to re rank search 

results such that the results that have been previously selected 

for a given query are promoted ahead of other search results. 

 

Ng et al. [16] proposed an algorithm which combines a spying 

technique together with a novel voting procedure to determine 

users’ document preferences from the clickthrough data. They 

also employed the RSVM algorithm to learn the user behavior 

model as a set of weight features. More recently, Agichtein et 

al. [17] suggested that explicit feedback (i.e., individual user 

behavior, clickthrough data, etc.) from search engine users is 

noisy. One major observation is the bias of user click 

distribution toward top ranked results. To resolve the bias, 

Agichtein suggested cleaning up the clickthrough data with 

the aggregated “background” distribution. RankNet [18], a 

scalable implementation of neural networks, is then employed 

to learn the user behavior model from the cleaned click 

through data. 

 

III. QUERY CLUSTERING ALGORITHMS 

How to choose query clustering algorithm Choosing an 

appropriate clustering algorithm is also very critical to the 

effectiveness and efficiency of the query clustering process. 

While choosing the clustering algorithm, the following things 

must be kept in mind: 

The algorithm should be capable of handling a large data set 

within reasonable time and space constrained. 

The algorithm should be easily extended to cluster new 

queries incrementally. 

The algorithm should not require manual setting of the 

resulting form of the clusters. 

If user interested in only finding FAQs, then algorithm should 

filter out those queries with low frequencies. 

Based upon above assumptions we have following query 

clustering algorithms: 

A. BB’s Graph Based Clustering Algorithm 

In BB’s graph-based clustering [3], a query-page bipartite 

graph is first constructed with one set of the nodes 

corresponding to the set of submitted queries, and the other 

corresponding to the sets of clicked pages. If a user clicks on a 

page, a link between the query and the page is created on the 

bipartite graph. After obtaining the bipartite graph, an 

agglomerative clustering algorithm is used to discover similar 

queries and similar pages. During the clustering process, the 

algorithm iteratively combines the two most similar queries 

into one query node, then the two most similar pages into one 

page node, and the process of alternative combination of 

queries and pages is repeated until a termination condition is 

satisfied. The main reason for not clustering all the queries 

first and then all the pages next are that two queries may seem 

unrelated prior to page clustering because they link to two 

different pages but they may become similar to each other if 

the two pages have a high enough similarity to each other and 

are merged later. The example in Fig. 1 helps illustrate this 

scenario. To compute the similarity between queries or 

documents on a bipartite graph, the algorithm considers the 

overlap of their neighboring vertices as defined in the 

following equation: 

                                                   

Sim(x,y)= |N(x) ∩ N(y)|/|N(x) U N(y)|              

if |N(x) U N(y)|  >0, 

                                                               0,  otherwise           

where N(x) is the set of neighboring vertices of x, and N(y)is 

the set of neighboring vertices of y. Intuitively, the similarity 

function formalizes the idea that x and y are similar if their 

 respective neighboring vertices largely overlap and vice 

versa. 

 

 
Fig.1 Queries q1 and q3 seem unrelated before document clustering.(b) After 

document clustering, queries q1 and q3 are then related to each other because 

they are both linked to the document cluster (d1; d2). 

B. Concept Based Clustering Algorithm 

 

1 Clustering on Query Concept Bipartite Graph: We now 

describe our concept-based algorithm (i.e.,BB’s algorithm 

using query-concept bipartite graph) for clustering similar 

queries. Similar to BB’s algorithm, our technique is composed 

of two steps: 1) Bipartite graph construction using the 

extracted concepts and 2) agglomerative clustering using the 

bipartite graph constructed in step 1. 

Using the extracted concepts and clickthrough data, the first 

step of our method is to construct a query-concept bipartite 

graph, in which one side of the vertices correspond to unique 

queries, and the other corresponds to unique concepts. If a 

user clicks on a search result, concepts appearing in the web-

snippet of the search result are linked to the corresponding 

query on the bipartite graph. Algorithm1 shows the first step 

of our method. 

 

 

Algorithm 1 Bipartite Graph Construction 
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Input: Clickthrough data CT, Extracted Concepts E 

Output: A Query-Concept Bipartite Graph G 

1: Obtain the set of unique queries Q = {q1,q2,q3…….} from 

CT 

2: Obtain the set of unique concepts C = {c1,c2,c3…….}from 

E 

3: Nodes (G) = Q U C where Q and C are the two sides in G 

4: If the web-snippet s retrieved using qi єQ is clicked by a 

user, create an edge e= (qi,cj) in G, where cj is a concept 

appearing in s. 

 

After the bipartite graph is constructed, the agglomerative 

clustering algorithm is applied to obtain clusters of similar 

queries and similar concepts. The noise-tolerant similarity 

function (recall (2)) is used for finding similar vertices on the 

bipartite graph G. The agglomerative clustering algorithm 

would iteratively merge the most similar pair of white vertices 

and then merge the most similar pair of black vertices and so 

on. We present the details in Algorithm 2. 

 

Algorithm 2 Agglomerative Clustering 

Input: A Query-Concept Bipartite Graph G 

Output: A Clustered Query-Concept Bipartite Graph G
c 

1: Obtain the similarity scores for all possible pair’s of queries 

in G using the noise-tolerant similarity function given in (2). 

2: Merge the pair of queries (qiqj) that has the highest 

similarity score. 

3: Obtain the similarity scores for all possible pair’s of 

concepts in G using the noise-tolerant similarity f unction 

given in (2). 

4: Merge the pair of concepts (ci; cj) that has the highest 

similarity score. 

5. Unless termination is reached, repeat steps 1-4. 

2 Personalized Concept based clustering: We now explain the 

essential idea of our personalized concept-based clustering 

algorithm with which ambiguous queries can be clustered into 

different query clusters. Personalized effect is achieved by 

manipulating the user concept preference profiles in the 

clustering process. An example is shown in Fig. 2a. We can 

see that the query “apple” submitted by users User1 and User3 

become two vertices “appleUser1” and “appleUser3.” If User1 

is interested in the concept“apple store,” as recorded in the 

concept preference profile, a link between the concept “apple 

store” and the query “apple(User1)” would be created. On the 

other hand, if User3is interested in the concept “fruit,” a link 

between the concept “fruit” and “apple(User3)” would be 

created. After the personalized bipartite graph is created, our 

initial experiments revealed that if we apply BB’s algorithm 

directly on the bipartite graph, the query clusters generated 

will quickly merge queries from different users together, thus 

losing the personalization effect. We found that identical 

queries, though issued by different users and having different 

meanings, tend to have some generic concept nodes such as 

“information” in common, e.g., “apple(User1)” and 

“apple(User3)” both  connect to the “information” concept 

node in Fig. 2a. Thus, these query nodes will likely be merged 

in the first few iterations and cause more queries from 

different users to be merged together in subsequent iterations. 

Considering Fig. 2a again, if “apple(User1)” and 

“apple(User3)” are merged, the next iteration will merge the 

concept nodes “applestore,” “fruit,” and “information.” When 

the clustering algorithm goes further, queries across users will 

be further clustered together. At the end, the resulting query 

clusters have no personalization effect at all. To resolve the 

problem, we divide clustering into two steps. In the initial 

clustering step, an algorithm similar to BB’s algorithm is 

employed to cluster all the queries, but it would not merge 

identical queries from different users. After obtaining all the 

clusters from the initial clustering step, the community 

merging step is employed to merge query clusters containing 

identical queries from different users. We can see from Fig. 2d 

that “apple(User1)” and “apple(User3)” belong, correctly, to 

different clusters. Algorithm 3 shows the details of the 

personalized clustering algorithm. Similar to the BB’s 

algorithm, a query-concept bipartite graph is created as input 

for the clustering algorithm. The bipartite graph construction 

algorithm is similar to Algorithm 1, except each individual 

query submitted by each user is treated as an individual vertex 

in the bipartite graph. 

Algorithm 3 Personalized Agglomerative Clustering 

Input: A Query-Concept Bipartite Graph G 

Output: A Personalized Clustered Query-Concept 

Bipartite Graph G
p
 

// Initial Clustering 

1: Obtain the similarity scores in G for all possible pairs of 

queries using the noise-tolerant similarity function given in 

(2). 

2: Merge the pair of most similar queries (qi, qj) that does not 

contain the same queries from different users. 

3: Obtain the similarity scores in G for all possible pairs of 

concepts using the noise-tolerant similarity function given in 

(2). 

4: Merge the pair of concepts (ci,cj) having highest similarity 

score. 

5. Unless termination is reached, repeat steps 1-4. 

// Community Merging 

6. Obtain the similarity scores in G for all possible pairs of 

queries using the noise-tolerant similarity function given in 

(2). 

7. Merge the pair of most similar queries (qi, qj) that contains 

the same queries from different users. 

8. Unless termination is reached, repeat steps 6 and 7. 
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Fig. 2. Performing personalized concept-based clustering algorithm on a small 

set of clickthrough data. Starting from top left: (a) the original bipartite graph. 

(b), (c) initial clustering. (d), (e) Community merging. 

 

Initial clustering (i.e., steps 1-5 of Algorithm 3) is similar to 

BB’s agglomerative algorithm as already discussed. However, 

queries from different users are not allowed to be merged in 

initial clustering. Figs. 2b and 2c show examples of query and 

concept merging, respectively. Fig. 2d illustrates the result of 

initial clustering. In community merging (i.e., steps 6-8 of 

Algorithm 3), query clusters containing identical queries from 

different users are compared for merging. Figs. 2dand 2e 

show an example of query cluster merging. The query clusters 

{apple computer(User2); apple(User1)} and {apple(User2) 

and apple mac(User1)} both contain the query “apple” and are 

leading to the same concept “apple store.” Therefore, they are 

merged in community merging as one big cluster. 

IV CONCLUSION 

The algorithms described in this paper are fully capable of 

clustering of search engine queries. If one performs 

experiment with these algorithms then he/she finds better 

precision and recall then the existing query clustering 

methods. Better precision and recall values increases the 

effectiveness of search engine queries, which does not add 

extra burden to the users. Also with the help of these 

algorithms one can improves prediction accuracy and 

computational cost. Future work can be extended by getting 

better precision and recall values for search engine queries. 
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