
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper

 Available online at: www.ijarcsse.com

 Analysis for Go-Back-N ARQ Protocols on Multi

Channels by using AIMD Congestion Control Algorithm
1
P.Radha Krishna Reddy

2
Ashim Roy

 3
G.Sireesha

4
K.Pushpa Rani

 M .Tech Student M.Tech Student Assistant Professor Associate Professor

Abstract: In this paper we proposed to improve channels transmission rate but different time-invariant error rates. By assuming the

Gilbert–Elliott model (GEM) for each channel and TCP for high speed. The additive increase/multiplicative-decrease (AIMD)

algorithm is a feedback control algorithm best known for its use in TCP Congestion Avoidance. AIMD combines linear growth of the

congestion window with an exponential reduction when congestion takes place. Multiple flows using AIMD congestion control will

eventually converge to use equal amounts of a contended link. The related schemes of multiplicative-increase/multiplicative-decrease

(MIMD) and additive-increase/additive-decrease (AIAD) do not converge. We extend our analysis to time-varying channels. We

compute the probability mass functions of the sequencing buffer occupancy and the sequencing delay for time-invariant channels. Our

approach is based on the logarithm of the window size evolution has the same behaviour as the workload process in a standard G/G/1

queue. The Laplace-Stieltjes transform of the equivalent queue is then shown to directly provide the throughput of the congestion

control algorithm (CCA) and the higher moments of the window size.

Keywords— AIMD, GEM, TCP, CCA, PGF, PMF.

1. INTRODUCTION:

Go-Back-N ARQ is a specific instance of the automatic

repeat request (ARQ) protocol, in which the sending process

continues to send a number of frames specified by a window

size even without receiving an acknowledgement (ACK)

packet from the receiver. It is a special case of the general

sliding window protocol with the transmit window size of N

and receive window size of 1.

The receiver process keeps track of the sequence number of

the next frame it expects to receive, and sends that number

with every ACK it sends. The receiver will ignore any frame

that does not have the exact sequence number it expects –

whether that frame is a "past" duplicate of a frame it has

already ACK'ed [1] or whether that frame is a "future" frame

past the last packet it is waiting for.

Once the sender has sent all of the frames in its window, it

will detect that all of the frames since the first lost frame are

outstanding, and will go back to sequence number of the last

ACK it received from the receiver process and fill its window

starting with that frame and continue the process over again.

There are a few things to keep in mind when choosing a

value for N.

1: The sender must not transmit too fast. N should be

bounded by the receiver’s ability to process packets.

2: N must be smaller than the number of sequence numbers

(if they are numbered from zero to N) to verify transmission

in cases of any packet (any data or ACK packet) being

dropped.

3: Given the bounds presented in (1) and (2), choose N to

be the largest number possible.

The receiver window is one frame wide; on a frame error

the receiver discards the frame and all subsequent fames and

sends no ACKs. Eventually the senders will timeout and

resend the damaged frame and all subsequent frames. This can

waste a lot of bandwidth if the error rate is high.

http://www.ijarcsse.com/
http://en.wikipedia.org/wiki/Automatic_repeat_request
http://en.wikipedia.org/wiki/Automatic_repeat_request
http://en.wikipedia.org/wiki/Automatic_repeat_request
http://en.wikipedia.org/wiki/Data_frame
http://en.wikipedia.org/wiki/Acknowledgement_(data_networks)
http://en.wikipedia.org/wiki/Sliding_window_protocol
http://en.wikipedia.org/wiki/Go-Back-N_ARQ#cite_note-KuroseRoss-0

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Following figure shows a Go-back-N ARQ protocol; for

simplicity the sequence numbers are shown as continuously

ascending. Sequence number 2 is received with an error and

discarded and all subsequent frames are discarded (sequence

numbers 3 to 5). Eventually sequence number 2 timeouts and

is resent together with all subsequent frames.

(a) The sender must store a message and all subsequence

messages until an ACK arrives for the first,

 (b) The receiver only needs to store a single frame which

can then be passed to the host.

Although that are MaxSeq + 1 sequence numbers (0 to

MaxSeq) only MaxSeq frames can be outstanding at any time.

Consider the case where a three bit sequence number is

being used with sequence numbers ranging from 0 to 7 and we

can have 8 frames outstanding:

The sender sends frames 0 to 7

The receiver receives each frame (0 to 7) in turn and passes

message to the host, advances its window and sends an ACK

The ACKs for frames 0 to 7 are all lost (lightning strike on

comms line)

The receiver is now expecting frame sequence number 0

After timeout the sender resends frames 0 to 7

The receiver thinks these are the next 8 frames and passes

them to the host, etc.

To avoid this gap is introduced in the sequence numbers to

ensure no overlap, ie:

The sender sends frames 0 to 6.

The receiver receives each frame (0 to 6) in turn and passes

message to the host, advances its window and sends an ACK .

The ACKs for frames 0 to 6 are all lost (lightning strike on

comms line).

The receiver now is expecting frame sequence number 7.

After timeout the sender resends frames 0 to 6 .

The receiver discards all these frames (outside its window)

but sends ACKs.

The sender gets ACKs for 0 to 6 and sends frame 7, etc.

2. THE MODEL

The approach taken is to increase the transmission rate

(window size), probing for usable bandwidth, until loss occurs.

The policy of additive increase may, for instance, increase the

congestion window by a fixed amount every round trip time.

When congestion is detected, the transmitter decreases the

transmission rate by a multiplicative factor; for example, cut

the congestion window in half after loss. The result is a saw-

tooth behavior that represents the probe for bandwidth.

AIMD requires a binary signal of congestion. Most

frequently, packet loss serves as the signal; the multiplicative

decrease is triggered when a timeout or acknowledgement

message indicates a packet was lost. It is also possible for in-

network mechanisms to mark congestion (without discarding

packets) as in Explicit Congestion Notification (ECN).

Let w(t) be the sending rate (e.g. the congestion window)

during time slot t, a (a > 0) be the additive increase factor, and

b (0 < b < 1) be the multiplicative decrease factor.

In TCP, after slow start, the additive increase factor a is

typically one MSS (maximum segment size) per round-trip

time, and the multiplicative decrease factor b is typically 1/2.

3. ANALYSIS:

Consider the following discrete time stochastic recursive

equation Wn+1 = max (AnWn,1)…. (1) The process, {Wn},

can be viewed as a sequence of observations of a continuous

time process sampled at certain, not necessarily equal, time

intervals. The sequence An 2 (0, 1) is assumed to be stationary

and ergodic. Taking the logarithm of equation (3), we obtain

log[Wn+1] = max(log[An] + log[Wn], 0).

Using the substitutions Yn = log[Wn], and Un = log[An] in

the above equation, we obtain

Yn+1 = max (Yn + Un , 0)…. (2)

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

We now make the following observation: The recursive

equation (4) has the same form as the equation describing the

workload process in a G/G/1 queue observed at, say, just after

an arrival Un denotes the 5 difference between the service

time of the nth customer and the inter arrival time between the

nth and the (n + 1) th customer. Since the introduced

transformation, log(·), is invertible, there is a one to one

correspondence between the processes {Yn, n ¸ 0} and {Wn, n

¸ 0}. This observation allows us to study the stability of the

window process {Wn, n ¸ 0} via that of {Yn, n ¸ 0}.

Furthermore, the analogy with queuing theory of the process

{Yn, n ¸ 0} allows us to obtain the steady state moments of

Wn. Theorem 3.1 Assume that E [logA0] < 0. Then there

exists a unique stationary ergodic process

{W * n}, defined on the same probability space as {Wn},

that satisfies the recursion (1).Moreover, for any initial value

W0 = w, there is a random time Tw, which is finite with

probability 1, such that Wn = W * n for all n >= Tw. If E

[logA0] > 0 then Wn tends to infinity w.p.1 for any initial

value W0 = w. The log transformation allows us to obtain the

moments of Wn in the stationary regime (i.e., moments of

W*n) from the Laplace-Steiltjes Transform (LST) of Y*n in

the stationary regime (i.e., LST of Y * n). The LST of Y * n

is given by G(s) = E [e -
sY *n

]…(4) which is defined for s 2

S, where S is the region of convergence of G(s). For a given

integer k ¸ 0, the kth moment of W* n is obtained as follows
E[(W*n)k] = E[exp(kY *n)] = G(−k)….(5) where −k is assumed

to belong to S. If −k 62 S then the corresponding moment is 1. Thus,

all finite moments of W* n can be obtained from the LST of Y * n .

A similar analysis can be done for the stochastic recursive equation

Wn+1 = min(AnWn,B)….(6) by making the transformation Yn =

log[B]−log[Wn]. The moments of W*n can then be obtained from

the LST of Y * n using the relation E[(W*n)k] = E[Bk exp(−kY *n)]

= BkG(k)…..(7)All the moments of W*n are finite since G(s) is

finite for s ¸ 0.The recursive equation for model (i), as given by (1),

is similar to equation(3). Therefore, the analysis of this model can be

done along the lines of the analysis of (3). Similarly, the analysis of

models (ii) and (iii) can be done along the lines of the analysis of (6).

We note that the analysis of model (iii) is similar to that of model (ii).

The equivalent queuing system of model (iii) can be obtained by

deleting the idle periods of the equivalent queuing system of model

(ii). The throughput of the AIMD algorithm, or the first moment of

the window size, under different models, can be obtained from

equation (5) and (7). These two assumptions allow us to use a

discrete state space, S = {0, 1, 2, ...} for Yn. Thus, Yn can be

modeled as a discrete state space Markov chain. The state Yn = i

corresponds to Wn = Bl®i. The transition probabilities for this model

are shown in Figure 2. Let Pn(j), j 2 S, be the probability of Yn being

in state j at the end of the nth RTT. The probability of being in state j

at the end of the (n + 1)th RTT is given by

Pn+1(j) = (1 − p)Pn(j − 1) + pPn(j + k), j >=1 ,p Pk i=0 Pn(i), j =

0…..(8)

Denote the z-transform of Yn by Yn(z). Yn(z) is defined as Yn(z)

= ∑ Pn(j)zj.(9)

 j=0

4. EXPERIMENTAL EVALUATION:

Upper Bound on Window Size and Window Dependent

Random Losses: The probability of a loss in an RTT was

independent of the window size in that RTT. In this section,

we consider a model in which the losses in an RTT depend on

the window size in that RTT. Specifically, we assume that

each packet is dropped (or, equivalently, is in error) with a

constant probability q. As a consequence of this assumption,

the probability of packet drops in an RTT is no longer

independent of the window size in that RTT. First, we present

the model with window dependent losses. Then we propose an

approximation to this model which will enable us to compute

the throughput in the window dependent model using the

expression for throughput in the window independent model

(model (ii)). In each RTT, the window is reduced only once

even in the presence of multiple packet drops. Loss recovery

mechanisms of the recent TCP flavours such as New Reno

and SACK. let Wn be the window size in the nth RTT. Let pn

be the probability that the window is reduced in the nth RTT.

Then, pn is given by pn = 1 − (1 − q)Wn…..(9) The window

size evolution for this model can be written as Wn+1 =

min(AnWn,Bu), where Bu is the upper bound on the window

size, and An is now given by

An =α w.p. 1 − pn,¯β w.p. pn..…(10)

5. SIMULATION RESULT:

Scalable TCP was proposed as a modification to the

existing standard TCP for high speed networks. In the

congestion avoidance phase, Scalable TCP uses the following

algorithm to update the sender’s window at the end of every

RTT: Wn+1 = 1.01 ×Wn if no losses are detected during the

nth RTT,Wn+1= 0.875 ×Wn if one or more losses are

detected during the nth RTT. As mentioned in the

Introduction, Scalable TCP is an instance of AIMD protocols,

and therefore, we validate our models by performing

simulations with Scalable TCP. The simulation are performed

using Ns-2.The simulation setup has a source and a

destination node. The source node has infinite amount of data

to send and uses Scalable TCP with New Reno flavor. The

link bandwidth is 150 Mbps and the two way propagation

delay is 120 ms. The window at the source is limited to 500

packets to emulate the receiver advertised window. The BDP

for this system is approximately 2250 packets (packet size is

1040 bytes). In the Scalable TCP we have implemented in ns-

2, the following assumptions are made: • the minimum

window size, Bl, is 8. The growth rate of Scalable TCP is very

small for small window sizes. It has been use the Scalable

algorithm after a certain threshold. • There is no separate slow

start phase since slow start can be viewed as a multiplicative

increase algorithm with α = 2. • For each positive ACK

received, the window is increased by α − 1 packets. When a

loss is detected, the window is reduced by a factor of β. α is

taken as 1.01 and β is taken as 0.86. This value of β gives k =

−log[β]/ log[α] =15. We set α and β in this way so as to be

close to the values recommended in (α = 1.01, β = 0.875).

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

E [Wn] = 8n a/ a − n, respectively. In the simulations, the

density function of W is obtained by sampling the window at

an interval of RTT = 0.12s. We would like to note that the

RTT is very close to the propagation delay in the present

setting, and does not vary much. This results in a small

discrepancy between the simulations and the theoretical

function. The throughput in (TCP packets)/RTT as a function

of the loss rate, p. The error bars are the 99% confidence

intervals. Figure 8 shows the throughput in (TCP

packets)/RTT as a function of the loss rate, p, for the model in

which the maximum window at the sender is limited by the

receiver’s advertised window. The receiver buffer is assumed

to be limited to 500 packets. The error bars are the 99%

confidence intervals. A good match is observed between the

simulations and the analysis

two regions where model (i) and model (ii) are valid,

respectively. As per approaches 1/(k + 1) from either

direction, the approximate models (i) and (ii) diverge from the

simulation results. However, model (i) gives a good estimate

when (k + 1) p >> 1, i.e., p >> 0.625 (k = 15 in the

simulations). Similarly, model (ii) gives a good approximation

of the system when p << 0.625. The exact model fits well

throughout the range of p. The throughput for model (i) is

plotted for p ¸ 0.068 because a (in equation (18)) is > 1 for

p>=0.0673.

6. CONCLUSION:

On Go-Back-N ARQ protocol logarithm of the window

size process of a connection using the AIMD congestion

control algorithm is equivalent to the workload process in a

G/G/1queue. The throughput of the connection and the higher

moments of the window size process can be computed using

the Laplace-Stieltjes transform of the equivalent workload

process. For window independent losses, an exact expression

can be obtained for the steady state probability distribution of

the window size, and the throughput of the connection. In

Future For window dependent losses an approximate

expression, analogues to the square root formula for standard

TCP, can be used to compute the throughput as well as SISD

or MISD can be applied for calculating error rate for single

and multiplicative channels when selective sequential queues

are approached.

ACKNOWLEDGMENT

We would to thank the anonymous referee for helpful

comments.

REFERENCES

[1] M. E. Anagnostou and E. N. Protonotarios, ―Performance

analysis of the selective repeat ARQ protocol,‖ IEEE Trans.

Commun., vol. COM-34, pp. 127–135, 1986.

[2] Z.Rosberg and N. Shacham, ―Resequencing delay and

buffer occupancy under the selective-repeat ARQ,‖ IEEE Trans.

Inf. Theory, vol. 35, pp. 166–173, 1989.

[3] M. Moeneclaey, H. Nruneel, I. Bruyland, and D. Y. Chung,

―Throughput optimization for a generalized stop-and-wait ARQ

scheme,‖ IEEE Trans. Commun., vol. COM-34, pp. 205–207,

1986.

[4] J. G. Kim and M. K. Krunz, ―Delay analysis of selective

repeat ARQ for a Markovian source over a wireless channel,‖

IEEE Trans. Veh. Technol., vol. 49, pp. 1968–1981, 2000.

[5] L. B. Le, E. Hossain, and A. S. Alfa, ―Delay statistics and

throughput performance for multi-rate wireless networks under

multiuser diversity,‖ IEEE Trans. Wireless Commun., vol. 5, pp.

3234–3243, 2006.

[6] M. Rossi, L. Badia, and M. Zorzi, ―SR ARQ delay statistics

on N-state Markov channels with non-instantaneous feedback,‖

IEEE Trans.Wireless Commun., vol. 5, pp. 1526–1536, 2006.

[7] D. Towsley, ―A statistical analysis of ARQ protocols

operating in a non independent error environment,‖ IEEE Trans.

Commun., vol. COM-29, pp. 971–981, 1981.

[8] Z. Ding and M. Rice, ―Throughput analysis of ARQ

protocols for parallel multichannel communications,‖ in Proc.

IEEE GLOBECOM, 2005, pp. 1279–1283.

[9] N. Shacham and B. C. Shin, ―A selective-repeat-ARQ

protocol for parallel channels and its resequencing analysis,‖

IEEE Trans. Commun., vol. 40, pp. 773–782, 1992.

[10] S. Floyd. HighSpeed TCP for Large Congestion Windows.

RFC 3649, Experimental, December 2003. Available at

www.icir.org/floyd/hstcp.html.

[11] L. Xu, K. Harfoush, and I. Rhee. Binary Increase

Congstion Control (BIC) for Fast Long-Distance Network. In

Proceedings of the IEEE INFOCOM, March 2004.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

[12] F. Baccelli and D. Hong. AIMD, Fairness and Fractal

Scaling of TCP Traffic. In Proceedings of the IEEE INFOCOM,

April 2002.
[13] G. Sireesha Analysis for ARQ Protocols on Multi

Channels by using MIMD Congestion Control Algorithm.

 BIBLIOGRAPHY

Mr. P. Radha Krishna Reddy received his

B.Sc(CS) from Sri Venkateswara University-

Tirupati. M.Sc in Computer science from Sri

Venkateswara University-Tirupati, and pursuing

M.Tech in Computer Science and Engineering from

Vagdevi Institute of Technology and Sciences,

JNTU-Anantapur.

Mr. Ashim Roy received his B.Tech in Information

Technology from Siliguri Institute Of Technology

in the year 2006,affiliated to West Bengal

University Of Technology . Pursuing M.Tech in

Information Technology from I Tech

College Falakata(West Bengal) affiliated to

University Of Karnataka.

Ms. G.Sireesha received her B.Tech in Computer

science and Engineering from Royal Institute of

Technology and Science, JNTU, Hyderabad,

M.Tech in Computer science (Parallel computing)

from Aurora’s Engineering College, JNTU,

Hyderabad.She is working as a Assistant Professor

in Computer Science and Engineering in Guru

Nanak Institute of Engineering & Technology, JNTU-Hyderabad.

Mrs Pushpa Rani received her B.Tech in
Computer science and Engineering from JNTU, and

M.Tech in Computer science and Engineering from

Acharya Nagarjuna University-Guntur. Having

eight years of teaching experience working in

Vagdevi Institute of Technology and Sciences,

JNTU- Anantapur.

