
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Performance Analysis of CORDIC Architectures Targeted for

FPGA Devices.

Burhan Khurshid
*

Dept. of ECE

National Institute of Tech.

Srinagar, J&K India

*khurshid_burhan@yahoo.com

Ghulam Mohd Rather
Dept. of ECE

National Institute of Tech.

Srinagar, J&K India

Hakim Najeeb-ud-din
Dept. of ECE

National Institute of Tech.

Srinagar, J&K India

Abstract— Digital Signal Processing domain has long been dominated by software systems; however, the state of art signal processing

is now again switching back to hardware based solutions. This requires development of algorithms that can be efficiently

implemented on different hardware platforms. CORDIC is one such hardware-efficient algorithm that is used in DSP systems for

calculating trigonometric, hyperbolic, logarithmic and other transcendental functions. This paper attempts to explore the different

implementations of CORDIC architectures, specific to FPGA devices. The algorithm is implemented in two different styles: folded

and unfolded. Unfolded design is improved architecturally by pipelining it. Comparisons are then made between these architectures

based on area, speed, throughput and power parameters and logical conclusions are drawn. All three designs have been coded in

VHDL and implemented using Xilinx FPGA synthesis tool. To check the functionality of the algorithm each of the designs has been

simulated for sine and cosine function evaluations. The simulations are carried out using Xilinx ISim tool and power metrics are

obtained using Xilinx Xpower Analyzer tool.

Keywords— CORDIC, FPGA, Rotation mode, Unfolded architecture, Folded architecture.

I. INTRODUCTION

Digital Signal Processing has many applications such as

digital audio broadcast, digital video, multimedia, digital

cellular communications, image processing [1] etc.

Traditionally dedicated architectures have been used for

these DSP applications. These architectures are mostly

based on general purpose microprocessors. Advancements

such as single cycle multiply-accumulate instructions,

special addressing modes, superscalar architectures and

VLIW processors has led to the dominance of these

general purpose microprocessors in the DSP landscape [2].

Today most of the DSP applications are based on real time

multimedia processing. Digital representation of

multimedia data can be handled in the same way as text;

however the processing rate has to be much faster [1]. On

account of this real time throughput constraint,

conventional processors are not suitable for modern day

DSP systems. Some hardware efficient algorithms are,

therefore required for these high speed applications. These

algorithms need to be implemented and optimized in

hardware so as to enable them to handle real time data

while maintaining an optimum trade-off between different

performance parameters (area, speed and power). CORDIC

is one such algorithm.

CORDIC (COordinate Rotation DIgital Computer) [3, 4] is

a hardware efficient shift-and-add algorithm that can be

used to

calculate various arithmetic functions. The algorithm has a

very simple operation requiring only shift and add

operations.

This simplicity in operation has made CORDIC a

competitive alternative for evaluating various

trigonometric and hyperbolic functions required in many

DSP applications. The original algorithm, developed by

Jack Volder [5] was limited to trigonometric calculations.

John Walther [6] extended the CORDIC theory and made

it possible to calculate a large variety of trigonometric and

other linear and hyperbolic functions.

FPGAs are often used as co-processors to perform all the

high speed tasks that cannot be achieved using

conventional processors. Historically, FPGAs have been

slower, less energy efficient and generally achieved less

functionality than their fixed ASIC counterparts.

Advantages include the ability to re-program in the field to

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

fix bugs, shorter time to market and lower non-recurring

engineering costs.

This paper attempts to implement the CORDIC algorithm

on FPGA platforms in different styles. The different

architectures are compared for various performance

parameters and based on these parameters an optimum

hardware solution for FPGAs is presented.The rest of the

paper is organized in the following manner. Section II

discusses the CORDIC algorithm and its operating mode

for sine and cosine function evaluation. Section III

discusses the folded and unfolded CORDIC architectures.

Section IV provides the implementation and simulation

results and based on the comparison metrics, performance

evaluation of folded and unfolded CORDIC architectures

is carried out.

II. CORDIC ALGORITHM

The CORDIC algorithm provides an iterative method of

performing vector rotations by arbitrary angles using only

shift and add operations [3]. The algorithm, credited to

Volder [5], is derived from the general (Givens) rotation

transform:

x'= x cos ø – y sin ø (1)

y'= x sin ø + y cos ø (2)

This rotates a vector in a Cartesian plane by the angle ø.

These can be rearranged so that:

x'= cos ø [x - y tan ø] (3)

y'= cos ø [y + x tan ø] (4)

The rotation angles are restricted so that, tan ø = ±2
-i
.

This reduces the multiplication operation by the tangent

term to simple shift operation. Any given target angle ø

can be decomposed into a sequence of smaller micro

rotations. Thus ø is decomposed as a sequence of

elementary rotations:

ø =Σ αi (5)

 Using these basic ideas we have the basic iterative

rotations as:

x i+1 = cos αi [xi – yi tan αi] (6)

y i+1 = cos αi [yi + xi tan αi] (7)

The rotation angles are restricted so that:

tan αi = ±2
-i

This assures that the multiplication by the tangent term is

reduced to simple shifting operation.

x i+1 = [xi – yi tan αi] / (1 + tan
2
 αi)

1/2

y i+1 = [yi + xi tan αi] / (1 + tan
2
 αi)

1/2

 Rearranging:

x i+1 = [xi – yi (±2
-i
)] / (1 + 2

-2i
)

1/2

y i+1 = [yi + xi (±2
-i
)] / (1 + 2

-2i
)
1/2

Or

x i+1 = Ki. [xi – yi .di. 2
-i
] (8)

 y i+1 = Ki. [yi + xi .di. 2
-i
] (9)

 Where,

Ki = 1/(1+2
-2i

)
1/2

; known as scale constant.

 di = ±1; known as decision function.

 Removing the scale constant from the iterative equations

yields a shift-add algorithm for vector rotation. The

product of the Ki’s can be applied elsewhere in the system

or treated as part of a system processing gain. That

product approaches 0.6073 as the number of iterations

goes to infinity. Therefore, the rotation algorithm has a

gain, An, of approximately 1.647. The exact gain depends

on the number of iterations, and obeys the relation:

An = Π [1+2
-2i

]
1/2

 The angle accumulator adds a third difference equation to

the CORDIC algorithm:

z i+1 = zi – αi

z i+1 = zi – di tan
-1

 (2
-i

) { tan αi = ±2
-

i
 }

For a single CORDIC micro-rotation the resulting

equations are:

 x i+1 = xi – yi .di. 2
-I

(10)

y i+1 = yi + xi .di. 2
-I

(11)

z i+1 = zi – di tan
-1

 (2
-i

) (12)

The CORDIC rotator is normally operated in one of two

modes. In rotation mode, the angle accumulator is

initialized with the desired rotation angle. The rotation

decision at each iteration is made to diminish the

magnitude of the residual angle in the angle accumulator.

The decision at each iteration is therefore based on the

sign of the residual angle after each step. The CORDIC

equations are:

x i+1 = xi – yi .di. 2
-i

y i+1 = yi + xi .di. 2
-i

z i+1 = zi – di tan
-1

 (2
-i

),

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Where,

di = -1 if zi < 0

 +1, otherwise

After n iterations we are provided with following results:

xn = An [x0 cosz0 – y0 sinz0] (13)

yn = An [y0 cosz0 + x0 sinz0] (14)

 zn = 0 (15)

Setting the y component of the input vector to zero

reduces the rotation mode result to:

 xn = An . x0 cosz0 (16)

yn = An . x0 sinz0 (17)

By setting x0 equal to 1/An, the rotation produces the

unscaled sine and cosine of the angle argument z0.

III. CORDIC ARCHITECTURES

In general, CORDIC architectures can be broadly

classified as folded and unfolded, based upon the hardware

realization of the three iterative equations [7]. A direct

duplication of equations 10, 11 and 12 into hardware

results in folded architecture. Folded architectures have to

be multiplexed in time domain so that all the iterations are

carried out in a single functional unit. This provides a

means for trading area for speed [8] in signal processing

architectures. One of the widely used folded architectures

is implementing the entire CORDIC core using a word

serial design.

A. Folded word serial design

A folded word serial design [4, 9], also called iterative bit-

parallel design is obtained simply by duplicating each of

the three difference equations in hardware as shown in

figure a.

Fig. a folded word serial CORDIC

Being a shift- add algorithm, each individual unit consists

of an adder/subtractor unit, a shifter and a register for

holding the computed values after each iteration. To start

with, the initial values are fed into each branch via a

multiplexer. The value in the z branch determines the

operation of the adder-subtractor unit. Signals in the x and

y branch pass through the shifter units and are then added

to (or subtracted from) the unshifted signal in the opposite

path. The z branch arithmetically combines the register

values with the values taken from a lookup table whose

address is changed according to the number of iteration.

The result of this operation determines the nature of

operation for the next iteration. After n iterations the

results are directly read from the adder/subtractor units. A

finite state machine is used to keep a track of shifting

distances and the ROM addresses. Since the

adder/subtractor unit and the shifters in each path are

shared on time basis this conventional approach of

implementing the CORDIC algorithm is not suitable for

high speed applications [4]. Another disadvantage is with

respect to the shift operations. When implemented in

hardware the shifters have to change the shift distance with

the number of iteration. For large number of iterations

these require a high fan in and reduce the maximum speed

for the application [2, 4].These shifters do not map well

into FPGA architectures and if implemented require

several layers of logic. The result is a slow design that uses

large number of logic cells. In addition the output rate is

also limited by the fact that the operation is performed

iteratively and therefore the maximum output rate equals

1/n times the clock rate, where n is the number of

iterations.

B. Unfolded parallel design

The iterative nature of the CORDIC processor discussed

above demands that the processor has to perform iterations

at n times the data rate. The iteration process can be

unfolded [9, 10] so that each of n processing elements

always performs the same iteration. A direct application of

the unfolding transformation is to design parallel

processing architectures from serial processing

architectures. At the word level, this means that word-

parallel architectures can be designed from word-serial

architectures [1]. An unfolded CORDIC processor is

shown in figure b

Fig. b Unfolded CORDIC design

Unfolding the CORDIC processor results in two

significant changes. First, the shifter in each unit is of

fixed shift i.e. it has to perform a constant shifting

operation in each stage. Thus the shifter needs not to be

updated as in the iterative structure. This makes their

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

implementation in FPGAs quite feasible. Second, the

unfolding process eliminates the use of ROM from the

processor which was required to hold the constant angle

values during each iteration. Those constants can be

hardwired instead of requiring storage space. The entire

CORDIC processor is thus reduced to an array of

interconnected adder- subtraction units. The need for

registers is also eliminated, making the unrolled processor

strictly combinatorial. Another advantage of the unrolled

design is that the processor can be easily pipelined [11] by

inserting registers between the adder-subtraction units. In

the case of most FPGA architectures there are already

registers present in each logic cell, so the addition of the

pipeline registers has no additional hardware cost.

IV. IMPLEMENTATION AND RESULTS

A. Methodology

The CORDIC processor is implemented in seven stages

and for a word length of 16 and 32 bits. The initial design

entry is done using VHDL. The design translation is

carried out in Xilinx ISE 12.4 [12]. The simulator database

is then analyzed for different performance parameters and

logical conclusions are drawn. The core is implemented

with the following synthesis description:

Platform: FPGA

Family: Virtex5

Target device: XC5VLX30

Package: FF324

Figure c shows the generated RTL schematic of the folded

CORDIC for one iteration. Figure d shows the RTL

schematic for one stage of unfolded CORDIC.

Fig. c RTL schematic of Folded CORDIC

Fig. d RTL schematic of Unfolded CORDIC

B. Simulations

The generated core has been simulated for sine and cosine

functions by operating it in the rotation mode. Figure e

shows the simulated sine and cosine values of certain

angles calculated using 16-bit iterative CORDIC. Figure f

and figure g shows the simulated sine and cosine values

calculated using parallel and pipelined designs respectively.

Fig. e Simulation result for 16-bit Folded CORDIC

Fig. f Simulation result for 16-bit Unfolded parallel CORDIC

Fig. g Simulation result for 16-bit Unfolded pipelined CORDIC

C. Analysis and Results

The folded and unfolded structures are analyzed for

different performance parameters. Table 1 provides latency

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

comparison for the two structures. All the structures are

implemented with the same synthesis description.

TABLE 1 LATENCY COMPARISON FOR16 AND 32-BIT CORDIC

Parameter

CORDIC architectures.

Folded Unfolded

16 Bit 32 Bit 16 Bit 32 Bit

Logic delay. 5.594ns 6.959ns 5.804 ns 9.18 ns

Route delay.
25.023n

s

33.071n

s
18.69 ns 25.0 ns

Max.

Combinational

delay.

33.078n

s

42.414n

s

24.472n

s
34.2 ns

Table 2 gives the maximum operating frequency

comparison of the folded, unfolded and pipelined

structures for word lengths of 16 and 32 bits.

TABLE 2 THROUGHOUT COMPARISON FOR16 AND 32-BIT

CORDIC

Parame

ter

CORDIC architectures.

Folded
Unfolded

(parallel)

Unfolded

(pipelined)

16 Bit 32 Bit
16

Bit
32 Bit 16 Bit 32 Bit

Max.

operati

ng

freque

ncy

216.5

7MHz

125.2

7

MHz

44.2

9

MH

z

31.67

MHz

232.6

MHz

163.43

MHz

It is observed that when timing response of the CORDIC

structures is concerned, the unfolded architecture has less

worst-case delay compared to the folded structure. This is

due to the unfolding process which eliminates the use of

storage registers and thus the corresponding set-up and

hold times. The overall latency is thus reduced by a factor

proportional to these set-up and hold times. Note, however

that the maximum operating frequency and thus the

throughput of the unfolded CORDIC is determined by the

worst case delay of the structure. This is because the

structure is purely combinatorial. Contrast to this, the

folded structure can be clocked at high frequencies

resulting in large operating frequencies. However,

pipelining the unfolded CORDIC makes it possible to

process multiple inputs simultaneously, thereby increasing

the maximum operating frequency of the unfolded

structures. For an N stage CORDIC core, N stage pipeline

can give maximum result. The first output of an N-stage

pipelined CORDIC core is obtained after N clock cycles.

Thereafter, outputs will be generated after every clock

cycle. Further analysis of CORDIC is carried out by

comparing the power consumption for 32 bit word length.

Table 3 gives the power consumption for the three

structures.

TABLE 3 POWER COMPARISON FOR 32-BIT CORDIC

Instance

(resource)

CORDIC architectures.

Folded
Unfolded

(parallel)

Folded

(pipelined)

power

(clock)
21.32 mW -- 17.75 mW

power

(logic)
2.15 mW 13.87 mW 9.20 mW

power

(signals)
15.71 mW 11.01 mW 12.33 mW

power (IOs) 93.60 mW 196.07 mW 196.64 mW

power

(leakage)/

quiescent

380.99 mW 382.30 mW 382.21 mW

dynamic

power
132.78 mW 220.95mW 235.92 mW

total power

dissipation
513.77 mW 603.25 mW 618.13 mW

Folded structures have less power dissipation compared to

the parallel and pipelined structures. The power consumed

by logical components in case of folded structures is quite

low. This is due to the fact that the folded structure uses

the same components repetitively. Similarly due to the

multiple input/output instantiations in unfolded structures

the power consumed by the input and output resources is

quite high resulting in high dynamic power dissipation in

the parallel and pipelined designs. Finally the three designs

are analyzed for area consumption in terms of resource

utilization and the results are tabulated in table 4 below

TABLE 4 AREA COMPARISON FOR 32-BIT CORDIC

parameter

CORDIC architectures.

Folded
Unfolded

(parallel)

Folded

(pipelined)

No. of Registers 768
--

678

No. of LUTs 287 1093 1006

 No. of logic

blocks used 285 1093 1006

No. of occupied

Slices 121 589 336

No. of LUT Flip

Flop pairs used 768 1093 1013

No. of bonded

IOBs 193 193 194

As expected, the folded structure is an efficient user of

logic since the same logical units are used over every

iteration. But since the results need to be fed back after

every iteration a large number of registers are used in the

folded word serial implementation.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

V. CONCLUSION

This paper carried out the performance analysis of the folded

and unfolded CORDIC architectures. The implementation was

targeted for FPGA devices. The resulting structures showed

differences in the way of using resources available in the

target FPGA device. The unfolded and fully pipelined design

uses the resources extensively but shows the best latency per

sample and thus maximum throughput rate. The folded word

serial design uses less on-chip resources but has a large

latency per sample. Thus these are not suitable for high speed

DSP applications. To sum up, a judicious trade-off between

area, power and throughput parameters, and the intended

application will determine the correct approach for

implementing the CORDIC algorithm. Moreover the selected

approach will have no effect on the precision of the results, as

the precision is a function of number of iterations (in case of

folded design) or number of stages (in case of unfolded design)

in the CORDIC core and not the approach used to implement

the core.

ACKNOWLEDGEMENTS

This work has been carried out in SMDP-II VLSI laboratory

of the Electronics and Communication Engineering

Department, of National Institute of Technology Srinagar,

India. This SMDP – II VLSI project is funded by Ministry of

Communication and Information Technology, Government of

India. Authors are grateful to the Ministry for the facilities

provided under this project.

REFERENCES

[1] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation, Wiley, 1999.

[2] R.Andraka, “A survey of CORDIC algorithms for FPGA based

computers,” FPGA ’98, in ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pp 191-200, 1998.

[3] J. E. Volder, “The CORDIC trigonometric computing technique,”

IRE Trans. Electronic Computing, volume EC-8, pp 330 – 334,
1959.

[4] J.S. Walther, “A unified algorithm for elementary functions,” Proc.

Spring. Joint Comp. Conf., vol. 38, pp. 379-385, 1971.

[5] E. Deprettere, P. Dewilde, and R. Udo, "Pipelined CORDIC

Architecture for Fast VLSI Filtering and Array Processing," Proc.

ICASSP'84, 1984, pp. 41.A.6.1- 41.A.6.4.

[6] H.M. Ahmed, J.M. Delosme and M. Morf, “Highly concurrent

computing structures for matrix arithmetic and signal processing,”

IEEE Computer magazine, vol. 15, pp. 65–82, 1982.

[7] J. E. Meggitt, “Pseudo division and pseudo multiplication

processes,” IBM Journal, vol. 6, no. 2, pp. 210–226, 1962.

[8] C.H.Lin and A.Y. Wu, “Algorithm and Architecture for High-
Performance Vector Rotational DSP Applications,” Regular IEEE

Transactions: Circuits and Systems I, Volume 52, pp 2385- 2398,

November 2005.

[9] M.D. Erecegovac and T. Lang, Digital Arithmetic, Elsevier,

Amsterdam, the Netherlands, 2004.

[10] Y.H. Hu, “Pipelined CORDIC architecture for the implementation
of rotational based algorithm,” in Proceedings of the International

Symposium on VLSI Technology, Systems and Applications, p. 259,

May 1985.

[11] A.A. De Lange, A.J. Van der Hoeven, E.F. Deprettere, and J. Bu, “

An optimal floating-point pipeline CMOS CORDIC Processor,"

IEEE ISCAS'88, pp. 2043-47, 1988.

 [12] ISE Simulator, Xilinx incorporation San Jose U.S.A, 2011.

Burhan Khurshid received the B.E.

degree in Electronics and

Communications Engineering from the

Kashmir University, India, in 2008, the

M.Tech degree in Communications and

IT from National Institute of Technology,

Srinagar, India in 2011. His research

interests are in the field of Reconfigurable

and DSP Design (system level) using VLSI.

G.M. Rather received the B.E. degree in

Electronics and Communications

Engineering from the Kashmir

University, India, in 1981, the M. S.

degree (1988) in Computer

Communications and the Ph.D. degree

(1997) from the Indian Institute of

Sciences Bangalore India. He is currently

Professor in the Department of Electronics and

Communication Engineering, National Institute of

Technology, Srinagar, India. His research interests are in

the field of Communications and DSP Design using VLSI.

He is a member of IETE India.

Najeeb-ud-din received the B.E. degree

in Electronics and Communications

Engineering from the Kashmir

University, India, in 1985, the M. Eng.

degree in Solid-state Electronics from

the University of Roorkee, India, and

the Ph.D. degree from the Indian

Institute of Technology (IIT), Bombay,

India, in 2003. He is currently

Associate Professor in the Department of Electronics and

Communication Engineering, National Institute of

Technology, Srinagar, India. His research interests are in

the field of SOI, CMOS Devices, Design, and Technology;

in mixed-signal applications. He is a Senior Member of

IEEE.

