
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Genetic Algoritham- An Effective Approach To Solve

Real Application Problem

 1 MS. A .S. DHANDE,
2
PROF DR. S. A. LADHAKE,

3
MS.S.S. DHANDE

 1
M.E.Student,

2
Principal , Phd .M.E.(E lectronics)

3
Lecturer ,M.E. (Cmps)

 Sipna‟s COE, Amravat i Sipna‟s COE, Amravat i Sipna‟s COE, Amravat i

ABSTRACT:Genetic algorithms have been applied to a very wide range of practical problems, often with valuable results.

This paper surveys just a few examples, to illustrate the diversity of approaches and to point to some of the considerations

that have proved important in making applications successful. Because GAs provide a fairly comprehensible way to address

a wide range of dffiult engineering and optimization problems producing good if not optimal results, it seems that the

technology is finding its way into real-world use much more easily than, say, expert systems did.

Keywords: Mutation, Crossover, Hill climbing, Random

1. INTRODUCTION

Genetic algorithms have been applied to a very

wide range of practical problems, often with valuable

results. This paper surveys just a few examples, to

illustrate the diversity of approaches and to point to

some of the considerations that have proved

important in making applications successful.

The annual construction of an Exam Timetable is a

common problem for all institutions of higher

education. Scheduling course time tables for large

modular courses is a complex problem which often

has to be solved in university departments. This is

usually done „by hand‟, taking several days or week

of iterative repair and after feedback from students

complaining that the time table is unfair to them in

some way.[7] Which we in this research tried solving

through conventional method but at a certain level we

recognized that solving timetabling problem with

increased constraints is very difficult by conventional

methods. A highly constrained combinatorial

problem, timetabling can also be solved by

evolutionary techniques. In this research we are

showing evolutionary based genetic algorithm

approach as an effective solution to solve course

timetabling problem.

Timetable scheduling is the problem of assigning

courses or exams to periods and to rooms. There are

two types of University schedule: the course

timetable and the exam timetable. These are related

to each other but can be quite different.

For example, generally, more than one exam will be

held in each exam hall at any particular time whereas

it would be extremely unlikely that any institution

would allow two courses to take place in the same

room. Also, the halls are shared between all

departments within the institution as opposed to each

department using its own rooms. This means that,

practically, the exam scheduling process must be

carried out centrally by the university. For the

purposes of this paper we will consider exams rather

than courses.

 The methods described, however, would be

equally applicable to course timetabling. In course

timetabling the hard constraint will be that at a time

lecturer cannot take lecture in two different classes

and after each lecture at least one lecture relaxation

should be given to the lecturer. Timetabling

constraints are many and varied. In this research,

genetic algorithm approach is applied for solving

university course timetabling problem. GA is a way

of addressing hard search and optimization problems

which provides a good solution although it requires

large execution time.[8]

Constraints Involved

The constraints that we treat are classified as hard

and soft. Hard constraints are those to which a time

table has to adhere in order to be satisfied.

Hard constraints involved are:

1) No participant (lecturer or class) can be in more

than two rooms at the same period.

2) No room should be double booked.

3) The room capacity should be large enough to

hold each class.

Violating the above constraints will cause the time

table to be unfeasible. In addition, we would also like

to satisfy as many soft constraints as possible in order

to produce a good quality timetable. Soft constraints

for this constrained optimization problem are actually

the students and lectures preferences which can be as

follows.

1) The second time for each subject should not be

in the same day.

2) No subject should be allocated to a time period

that heads of department don‟t demand because of

other work.

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

The subject should not be allocated to a time

period inconvenient for a lecturer.

1. GENETIC ALGORITHM

Genetic Algorithms are powerful general purpose

optimization tools which model the principles of

evolution [3]. They are often capable of finding

globally optimal solutions even in the most complex

of search spaces. They operate on a population of

coded solutions which are selected according to their

quality then used as the basis for a new generation of

solutions found by combining (crossover) or altering

(mutating) current individuals.

Traditionally, the search mechanism has been

domain independent, that is to say the crossover and

mutation operators have no knowledge of what a

good solution would be . A Genetic Algorithm starts

by generating a set (population) of timetables

randomly. These are then evaluated according to

some sort of criteria. An example would be how

many times any student has to sit two exams in a

row. On the basis of this evaluation population

members (timetables) are chosen as parents for the

next generation of timetables. By weighting the

selection process in favour of the better timetables,

the worse timetables are eliminated while at the same

time the search is directed towards the most

promising areas of the search space (see figure 1).

The crossover operator works by taking two

population members and combining them somehow

to produce one or two offspring. Traditionally this is

done by randomly selecting a point (gene) in the

coded solution then appending the part of the second

solution after that point to solution one up to that

point and vice versa. The mutation operator is only

applied to one solution at a time and involves the

random variation of one particular gene. This adds a

limited random element into the search and may

reintroduce potentially useful genetic material that

has been lost earlier in the search

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

The genetic algorithm maintains a population of

schedules and constructs subsequent generations by

adding new random schedules, making copies of high

quality schedules in the present generation, applies

the mutation operator to schedules, or uses the

crossover operator on 2 schedules. When performing

mutation or crossover, the schedules are selected with

a probability proportional to their fitness, allowing

the schedules with high quality to be selected more

frequently and make more “offspring”.

The free parameters in our GA are the size of the

population, number of generations to simulate, and

proportions of new generations to be made by the

copy, random, mutation, and crossover methods.[4]

Representation: We use the naive representation

of schedules.

A schedule contains lists of size containing the

room in which each course‟s exam is to occur and the

timing (corresponding to a pair or integers

representing the day and time) of each course‟s exam.

We will see that this representation is far from ideal,

but there is no clear alternative.

Mutation Operator: The mutation operator takes

a probability and a schedule. We loop over the

courses, and, with the given probability, each is or is

not set to a random room at a random time.

Crossover Operator: Given two schedules, the

crossover operator loops over the courses, and

chooses at random which schedule to take the room

and timing from for that course.[1]

2. OTHER SEARCH ALGORITHM

Random Search: The random search method

simply generates random schedules, evaluates their

fitness, and remembers the one that it has seen that

has highest fitness. This method is meant as a

baseline against which to compare the other methods.

If a search method doesn‟t perform significantly

better than random search with the same number of

fitness evaluations, it is useless.

Hillclimbing Search :The hillclimbing search that

we have implemented examines every schedule in the

neighbor hood of a given starting schedule, and then

continues from the

one with highest fitness, terminating when it has

performed as many evaluations as it is allowed to, or

it has found a schedule whose neighbor are all equal

or inferior to it.

The neighboring schedules are those where only

one course meets in either a different room, on a

different day, or at a different time. It can be seen that

this method is completely deterministic given a

starting schedule, and will always return a local

maximum.

Mutate Search: Mutate Search starts by

generating a random schedule. It makes an alternative

schedule (by using the same mutate operator made

for the genetic algorithm) with 1% of the data

randomized and keeps the better schedule.

This operation is repeated until it has performed as

many evaluations as it is allowed to.

This method can be changed to true simulated

annealing by varying the degree of modification

made to the current best schedule with the number of

evaluations remaining. Not being the focus of our

investigation, little effort was made to optimize the

parameters.[3]

3. TIME TABLE GENERATION

Two fundamental constraints govern the

production of a timetable. These are that no student

or invigilator can be in more than one place at a time

and that there must be sufficient seats to house all the

students present. We will call a timetable that

satisfies these constraints a feasible timetable.

Just because a timetable is feasible, unfortunately,

does not mean it is good enough to be used. Many

other criteria exist which may be used to judge the

quality of a timetable. The most common of these is

that a student should not be expected to sit two exams

in adjacent examination periods. A particular

institution may also wish that only exams of a similar

length are scheduled at the same time in the same

room or that larger exams come first to allow more

time for them to be marked. In the end, the only real

way to judge whether a timetable is a good one or not

is if the institution will use it. In this paper we will

describe a prototype genetic algorithm based

timetabling system which will allow feasible

timetables to be optimized as the particular institution

sees fit through the use of an appropriate graphical

user interface.

Genetic Algorithms have been successfully used to

schedule exams in a number of cases. Corne et al. use

a fairly traditional approach where each gene

represents the time at which its particular exam takes

place with crossover and mutation operators [3]. This

system, with a number of time saving improvements,

is in current use at the University of Edinburgh.

Paechter takes a different approach where the gene

for each exam not only specifies when it is to be

taken but also how to search for a new period if, after

crossover, the exam is causing a conflict. If the exam

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

may not be placed in any of the periods then it is left

as unscheduled unlike the previous system which

allows infeasible timetables.

4. CONCLUSION:

This paper helps to guide how genetic algorithm

is a powerful method for solving real world

problems. GA helps to solve difficult engineering and

optimization problems. Implementation of GA in

timetabling solve problems comes in conventional

method.

Factors for consideration of Genetic algorithm

include:

• Handling many different forms of timetabling

constraint while only ever dealing with feasible

timetables.

• Generating high-quality solutions despite the

increasing intractability which has resulted from

modularization.

• Providing a choice of several different good

schedules from which the user may choose the best.

• Directing the timetable to the most constrained

parts of the timetable so that, if necessary,

adjustments may be made manually.

6. REFERENCES

[1] Formulation of Genetic Algorithm to Generate

Good Quality Course Timetable-International Journal of
Innovation, Management and Technology, Vol. 1, No. 3, August

2010

ISSN: 2010-0248
[2]Solving an Exam Scheduling Problem Using a Genetic Algorithm
[3]A Genetic Algorithm Based University Timetabling System,

Edmund Burke, David Elliman and Rupert Weare
Department of Computer Science,University of

Nottingham,University Park, Nottingham, NG7 2RD.

[4] David E. Goldberg, 1989, “Genetic Algorithms in search,
optimization

and machine learning”.

[5] Bruns R. (1993) “Knowledge-Augmented Genetic
Algorithm for Production Scheduling”, IJCAI „93 Workshop on

Knowledge based Production Planning, Scheduling and Control.

[6] Applicationsofgeneticalgorithms by PeterRoss
andDaveCorne Department ofAI,UniversityofEdinburgh

80SouthBridge,Edinburgh

[7] A.T.Rahmani and N.Ono. A genetic algorithm for channel
routing problem. In S.Forrest, editor, Proceedings of ICGA-93,

pages 494{498, San Mateo,

[8] [3] C.Lin and P.Hajela. Genetic search strategies in large
scale optimisation. In AIAA Structures,

Structural Dynamics and Materials Conference,

