
Ramandeep Kaur, Rekha Bhatia
Punjabi University Regional Centre for IT and Management, Mohali, Punjab, India

DOI: 10.23956/ijarcsse/V7I6/0142

Abstract: The wireless detector network area unit those network that is employed to sense the conditions of temperature pressure then on. Due to far deployment and small size of the sensor nodes energy consumption is the major issue in the network. In this paper, various techniques have been discussed which reduce energy consumption of the wireless sensor networks. The energy efficient techniques are clustering techniques which are generally categorized as location-based and energy-based cluster head selection techniques.

I. INTRODUCTION

Wireless Sensor Network
Wireless device Network is that the most vital technology recently. Wireless device network may be a network wherever we tend to connect varied variety of device nodes physically watching that specific space. Microprocessors and radio transceivers are connected beside multiple sensors nodes for sensing the information. Sensing element nodes that are used for sensing the information, and for communication purpose.

Challenges of wireless network
- Low Power Consumption
The most important goal to be achieved during the designing of a sensor network is the reduction of power consumption in the network. The batteries which are present in the sensor nodes are impossible to be replaced and this is the reason that their lifetime needs to be increased by reducing their power consumption.

Energy Consumption
Sensor nodes that square measure deployed to performany specific application of wireless device network should consume energy at the same rate. If the energy consumption rate varies, then anybody of node depletes their batter at quick rate which explicit node becomes useless and network can dead.

QoS Support
With respect to the delivery latency and packet loss, various applications have varying QoS requirements in the networks. +For example, the fire monitoring applications are delay sensitive and hence, timely data delivery is required.

II. REVIEW OF LITERATURE

Chu-Fu Wang et al. (2014) proposed a Energy-Aware Sink Relocation technique is employed to extend the lifespan of wireless sensing element network[1].
WU Xiaoping et al. (2010) its supported LEACH protocol that involves selecting of cluster head. energy of each node is equal that ends up in equal probability of changing into cluster head of each node[2].
Maciej Nikodem et al. (2011) focused on the theoretical aspects of cluster in wireless sensing element network. it mean to boost the period of time of network[3].
Chi-Tsun Cheng et al. (2011) proposed a delay-aware of data collection network structure for wireless sensor networks. Data collection processes are minimized when delays occurred in wireless sensor network[4].

Zijan Wang et al. (2009) proposed an energy efficient and method for two collision-free routes victimization forced and used for power adjusted flooding and multipath algorithmic rule[5].

M. Guerroumi et al (2015) In this protocol, they used new energy management scheme for using a dynamic power threshold and also we introduce the new sink mobility scheme which is used to balance the network load[6].

III. CONCLUSION

In this paper, it has been concluded that wireless sensor network is the efficient network which senses environmental conditions like temperature, pressure etc and pass information to the base station. The clustering techniques are the energy efficient techniques which reduce energy consumption of the network. In this paper energy efficient techniques have been discussed and reviewed in terms of various parameters.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Description</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chu-Fu Wang et al.</td>
<td>(2014)</td>
<td>Its proposed a . Energy-Aware Sink Relocation technique is employed to extend the lifespan of wireless sensing element network.</td>
<td>The main focus in this paper is on residual energy of sensor node and according to that residual energy of sensor node the transmission range of sensor would adjust and also the relocation of sink is taken place according to the residual energy of sensor node [1].</td>
</tr>
<tr>
<td>WU Xiaoping et al.</td>
<td>(2010)</td>
<td>It’s supported LEACH protocol that involves selecting of cluster head. energy of each node is equal that ends up in equal probability of changing into cluster head of each node</td>
<td>In this cluster head near to base station are connected with base station and so on all the cluster head’s are connected with each other by multi-hop route. [2].</td>
</tr>
<tr>
<td>Maciej Nikodem et al.</td>
<td>(2011)</td>
<td>Its focused on the theoretical aspects of cluster in wireless sensing element network, it mean to boost the period of time of network.</td>
<td>Results show that clustering itself cannot improve network lifetime so additional techniques and means are required to be used in synergy with clustering [3].</td>
</tr>
<tr>
<td>Chi-Tsun Cheng et al. (2011)</td>
<td>(2011)</td>
<td>proposed a delay-aware of data collection network structure for wireless sensor networks. data collection processes are minimized when delays occurred in wireless sensor network.</td>
<td>Simulation results show that, when comparing with other common network structures in wireless sensor networks, the proposed network structure is able to shorten the delays in the data collection process significantly [4].</td>
</tr>
</tbody>
</table>

REFERENCES


