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Abstractð In cloud computing, attacks on the virtual machines (VM) can be of various types. Here we are dealing 

with attacks by one VM to another VM using a backdoor virus. Detection has been implemented by using the 

centralized unit of the hypervisor (ESXi) in VMware workstation setup which homes these VMs. Training and 

running the SVM (support vector machine) learning algorithm using the statistics obtained from ESXi and virtual 

machines (VMs), we distinguish whether they are valid or invalid entries. Thus, if majority of the values are invalid, 

we alert the respective VM that it is under attack and to recheck its processes. 
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I.  INTRODUCTION  

Cloud computing is a popular concept that delivers reliable services. Infrastructure-as-a-Service (IaaS) is one of the 3 

models delivered by cloud computing (PaaS, SaaS, IaaS). IaaS allows clients to increase their computational and storage 

resources without investing in new hardware. It is characterized by the concept of resource virtualization allows hosting 

multiple Operating System (OS) instances called virtual machines (VMs) on the same physical server. The IaaS model 

has three main components: a hypervisor (ESXi), hosted VMs and a virtual switch (vSwitch). The hosted VMs are 

considered the main source of security threats, since the cloud provider are not aware of their actual contents, and donot 

have much control over these VMs. This makes it easy to seize the hosted VMs and in turn a compromised VM can 

attack other hosted VMs, as VMs share the same hardware and hypervisor software. Such VMs cannot be trusted from 

the cloud providersô perspective to install their security software inside these VMs since it becomes possible to tamper 

and alter its behaviour, whether it is by the cloud consumer (the VM owner) or by an external attacker. Hence, traditional 

in-guest security solutions that operate based on the OS kernel trustworthiness do not secure such virtualized systems 

thoroughly. In cloud, a OS(Windows, Linux, Mac) on a VM is called a guest operating system. A layer called a VM 

monitor or manager (VMM) creates and controls the VMs. Typically there are two types of VMM. 1.hardware type I 

VMM which runs directly without the use of any OS 2. type II VMM that runs on top of a hosting OS and then spawns 

higher level VMs. In VMware, this VMM or hypervisor is given the term ESXi. Using the ESXi, we can see the network 

statistics of all the VMs running under it. Using this concept, we have created the detection mechanism along with the 

SVM algorithm to detect if any of the VM is compromised within the ESXi system. The SVM is a learning algorithm 

which is in the lines of neural networks. It works based on the training and testing concept. It is considered one of the 

better classification algorithms giving more accurate output. The rest of the paper is organized in the following manner. 

Section I shows related work with respect to VMware VM attacks and various detection mechanisms. Section II includes 

problem definition and section III deals with system architecture explained with flow  diagram. Section IV explains the 

implementation ending with section V which shows result analysis. Conclusion and future scope is given in section VI. 
 

II.    RELATED WORK  

In todayôs world, even hackers have developed malware capable of detecting 150 or more anti viruses. These 

malwares have different points of attack eg. VM, host, hypervisor, whether they were initiated externally or internally, 

random or targeted. Keeping all this in view, a new technique was conceived in the virtual environment, where the 

detection mechanism was kept outside the system body which may house the virus. So in virtualized case, we can use the 

VMM(Virtual Machine Manager) or hypervisor which tracks all the processes of the VMs to protect it. This out-of-the-

box approach was used for Intrusion Detection System (IDS) in a new prototype Livewire[10]designed by T. Garfinkel 

and M. Rosenblum from  Stanford University. If the IDS resides on the host, it has an excellent view of going-ons in 

hostôs software, but is highly susceptible to attack. On the other hand, if the IDS resides in the network, it is more 

resistant to attack, but has a poor view of the inside of host. Hence, they presented an architecture that retains the 

visibility of a host-based IDS, but keeps the IDS outside of the host for greater attack resistance. But a more severe attack 

by rootkit cannot be handled. So an analysis for the same was suggested by C. Kruegel, W. Robertson, and G. Vigna[8]. 

Here, it presents a technique that exploits binary analysis to ascertain, at load time, if a modules behavior resembles 

The behavior of a rootkit. These rootkits are implemented as kernel modules, and do not require modification of 

userspace binaries to conceal malicious activity. Also a new type of rootkit came into the picture which was handled by 

prototype given by S. T. King et al. in 2006 [9]. They assumed the perspective of the attacker to understand the 

vulnerabilities in system. 
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To address the limitation by óin-houseô detection mechanisms, VMwatcher, advocate placing the malware detection 

facilities outside of the protected VM. There exists a concern when switching over from in-the-box approach to out-of-

the-box called semantic gap. Instead of seeing semantic-level objects such as processes, files, and kernel  modules, we 

only see memory pages, registers, and disk blocks from outside the VM, making it difficult to detect virus. However, 

they gain tamper resistance at the cost of losing the native, semantic view. This gap is resolved by implementing the 

guest view casting in VMwatcher(refer fig.1) where it systematically reconstructs internal semantic views from the 

outside in a non-intrusive manner. Semantic gap can be solved using 2 methods: (i) view comparison-based malware 

detection and its demonstration in rootkit detection. (ii) out-of-the-box deployment [7] of host-based anti-malware 

software with improved detection accuracy and tamper-resistance. 

 
Fig. 1: Architecture of VM-Watcher [7] 

 

In 2009, researchers Thomas Ristenpart et al. from the University of California and MIT published a paper [1] that 

explored mapping the location of cloud-based VMs through network scanning tactics (cloud cartography). They used the 

fundamentals of cloud cartography to determine the co-residency of a target VM to launch a side channel attack. Here 

since we are dealing with VMware, research was done in the field of VM security without an agent by Ibrahim, Hamlyn-

Harris, John Grundy and Almorsy [14]. A new type of monitoring appliance was developed for VMwareôs VM that 

provides active, transparent, and realtime security in IaaS. This was based on the existing VMsafe libraries. Without 

installing any code inside the VM, it monitors volatile memory of VM as it will hold imprints of rootkit like hiding 

malware. It reconstructs kernel data structures which are changing dynamically to warn the VM. Main research was 

conducted in the area of mapping the introspected low-level raw bytes of memory to high-level OS data structures 

instances. Another way of protecting data is by using mobile security agents such as described by Priyank Singh Hada et 

al. [3], which proposed a trust model for cloud integrity and authenticity. They help collect valuable data related 

information from VM and safeguard it. Z. Xia et al. [2] proposed a hardware-software framework in 2013 using 

HyperCoffer and VM-shim. HyperCoffer only trusts the processor chip and makes no security assumption on external 

memory and devices. Solaimani et al. published a paper[15] in 2014 which take into account various statistical factors 

using vSphere Guest API to collect them. Information shown below can be collected by the SDK interface: 1.Maximum 

speed of VMôs CPU. 2. Reserved rate of VM execution. 3. Elapsed time since the VM was last powered on or reset 4. 

Number of CPU shares assigned. 5. CPU time consumed by a particular VM. All this data estimates how fast the VMsô 

CPUs are running compared to host CPUs. Memory related metrics are also collected: 1.Reserved Memory 2.Memory 

being used by VM. 3. Upper limit of memory available. They also used mpstat & vmstat to get CPU and memory data. 

Their outputs were integrated with that of vSphere Guest SDK using Kafka API for analysis. 

Keeping the above pros and cons of the existing system, we have conceptualised an idea which involves the ESXi as 

manager to capture the data regarding the VMs inside it. Since ESXi can look partially into the network statistics of the 

virtual machines, we use this as a point to analyse the behaviour of the VM. 

 

III.     SYSTEM DESIGN 

A. Problem Definition 

To detect a trojan attack on the virtual machine(VM) by another VM residing inside the same hypervisor (ESXi). 

Detection is done using VM statistics collected by ESXi and the host system which are both assumed to be 

uncompromised. 

 

B. System Architecture 

The entire architecture is built on the host OS of windows 8.1 having 16GB RAM, in order to be able to host many 

VMs on top of the VMware setup. Inside host OS, we have installed VMware workstation and vSphere Client to view the 

machines that are created inside the workstation. As seen in the fig. 2, we have the setup of VMware consisting of 

following components: 

1) VMwware workstation: This is where the virtual machines are created. These VMs can have directly any OS 

installed inside them using CD or .iso. They can also become type-2 hypervisors (software type) using the ESXi.iso. 

In order to access these inside VMs, we need to assign them an IP address through bridging or NATing. Then we can 

externally access to see their consoles using putty or vSphere client. Storage space and RAM for each is assigned 

virtually from the main host. 
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Fig. 2: VMware Architecture 

 

2)  ESXi: This is the hypervisor (a reduced linux shell) which can house many VMs. In our case we have 3 VMs- 2 

windows 2003 servers and 1 ubuntu desktop. ESXi enable only little view inside the VMs but many statistics can be 

retrieved using the esxtop command through putty. Virtual standard switch (vSS) and virtual network interface card 

(vNIC) provide the connectivity between VMs on the same host or on different hosts and each VM will have a vNIC 

with it. In our case since there is only one VM with ESXi installed, on top of workstation, all VMs inside share the 

same vNIC. 

3) vSphere Client: This is a tool given by VMware to see the consoles of the VMs (especially for the servers). It only 

requires IP and username/password to logon and get the system for his/her disposal. IaaS is seen clearly in this 

environment. 

 

C. Flow of Proposed System 

 
Fig. 3: Flow of Detection System. 
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 We elaborate the steps seen in the flow of detection system (refer fig. 3) as follows:  

1) Setup of VMware: As seen in system archictecture section, we know how each of the components are placed (refer 

fig.2). So here, we have 3 VMs insde the ESXi 5.0. First we setup a trojan attack mechanism inside one of the VMs 

using the MoSucker.iso. 

2) Certain network parameters are affected by the virus. So we modify the config file (using esxtop) to retain only the 

network statistics and get the file through FTP. 

3) Training the SVM before prediction: First, get the network stats such as packets received/sec, packets 

transmitted/sec etc. for normal behaviour of VMs and vNIC from ESXi. Upload this file for valid training case. Then 

put one of the VMs under attack by another VM. Collect the statistics again and upload these for the invalid case for 

that particular VM which was victim. 

4) We do this training for each of the VMs for their own valid and invalid scenarios. For capturing this training data we 

run an esxtop command in a batch mode. Now SVM algorithm takes in sample data points and defines 2 classes with 

the most optimised hyperplane separating the classes with the largest margin possible. 

5) Next, we capture and give to the prediction algorithm, any unknown set of values at a given point in time of a 

particular VM to predict if it is under attack or not. Since we do not test with single value but multiple values in any 

set, we will not get a definite 'valid or 'invalid' for all the values. There may be few 'valid' among invalid values and 

vice versa too. Hence we have defined a threshold of 50\% of valid values, above which the VM is safe. 

 

IV.     IMPLEMENTATION OF DE TECTION SYSTEM  

There are 2 parts in execution of any security scenario-first setup the attack parameters and then detect the breach in 

security. 

 

A. Infection by MoSucker Trojan 

Here we are using a hacker testing tool for creating a virus which is compressed as a stub for deployment. MoSucker 

tool is generally used by learners for testing and as a hacking environment to experiment on. Once this stub (.exe file) is 

double-clicked on inside the victim VM, the process opens a port in background of victim using his IP address enabling 

remote attacker to communicate. It may display a random error message suggesting that the file may be corrupted or not 

working. Seeing this message the user may delete the file from his system unaware of the open port running in the 

background. The port no. can also be given by attacker during the time of constructing the virus. 

 

B. Detection Mechanism 

In general, security is given by 3 basic means- external systems, hypervisor, in-guest system. The internal system 

comprises of antivirus, firewalls etc. Next are the external systems which can be threat detection and protection codes 

running in an external entity (or another VM) which would analyse certain codes of the VMs to detect if there has been a 

compromise. Eg: Virtualization-Aware Security Solutions (VASSs). Such VASSs have the ability to monitor and protect 

the hosted VMs, without installing any security code inside.  

 
Fig. 4: MoSucker GUI for establishing and monitoring/interfering with the victim. The IP address and port no. are used 

to access the victim. 

 

Last is the hypervisor itself trying to send some kind of signal to the VM if it comes across unusual behavior. Here in 

the last case, we assume the hypervisor is highly protected. We have used the internal ability of the hypervisor to see the 

network data of the VM to detect any abnormal statistics. We have captured only necessary data by modifying the 

configuration file which has many other statistics. This is obtained by the esxtop command. By typing letters 'c', 'i', 'm' 

etc., we retrieve the details of cpu utilisation, interrupts, memory statistics etc. We can choose to have required fields as 

ON and turn OFF the others. This modified config file can be stored in another location, default being ./esxtoprc50 

(system file). Now using this new config file, we run the esxtop command in batch mode with a time interval of 3 secs 

between 20 iterations. This is stored as a .csv file in a tmp folder. 

esxtop -b -d 3 -n -30 -c config02 > /tmp/result02.csv 
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The SVM detection is launched after retrieving this file data from the ESXi through FTP. This is a manual trigger. 

Once this is done, it internally generates a file which extracts only those columns from the statistic table that are required, 

and shows the location where it has been downloaded. So using this information, we train the algorithm for the specific 

VM for both valid and invalid values. Now, in future, for a fresh unknown set of values of the concerned VM, we can 

predict the outcome based on the trained data. If more than 50% values are invalid or valid, then the VM is under attack 

or safe respectively. 

 

C. What is SVM? 

Out of the many classifiers, this had gained popularity in recent times due to its learning capability and accuracy for 

smaller sets. SVMs, a discriminative learning-based approach, classify inputs (eg:words) into categories (eg:parts of 

speech) based on a feature or training set. SVM creates a hyperplane for all the linear points. Also, advantage is non-

linear input is converted mathematically using a kernel function to allow linear separation of the points from different 

categories. 

   
Fig. 5. SVM classification for a set of points and the hyperplanes 

 

In the simplest two-value scenario, a straight line would separate them in an XY plot.In N-attribute scenario, the 

separator will be an (N-1) hyperplane. The most commonly used kernel function is a Gaussian (the basic normal 

distribution function). As seen in fig. 5, the 2 widths on either side of the hyperplane B1 is what makes the margin. The 

separation process selects a subset of the training data that best differentiates the categories i.e. data points closest to the 

hyperplane which are known here are the supporting vectors. The support vectors lie on the edges of the street. Changing 

these support vectors will change the equation of the hyperplane. In SVM, the separating hyperplane maximizes the 

distance to support vectors from both classes thereby giving a good accuracy rate for classification of the data points. 

Consider x1, x2, x3éxn to be the inputs and y to be output. We have set of weights w(or wi), one for each feature, whose 

linear combination predicts the value of y. The decision surface separating the classes is a hyperplane. The plane H0 is 

the central line (median) in between, which is given by 

H0: wxi + b = 0    é(1) 

where w is a weight vector, x is input vector, b is bias 

 
Fig. 6: Equations of hyperplanes and margins 

 

As seen in the fig.6 the central hyperplane can also be defined as follow: 

wxi + b >= 0 for di = +1   é(2) 

wxi + b < 0 for di = -1   é(3) 

d+ is the shortest distance to the closest positive point d- is the shortest distance to the closest negative point. The margin 

(gutter) of a separating hyperplane is (d+) + (d-). Hence the 2 adjacent hyperplanes H1 and H2 are : 

H1:  wxi + b = +1      é(4) 

H2:  wxi + b = -1   é(5) 
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The points lying on the outlining hyperplanes H1 and H2 are the support vectors and only their weights will 

determine in maximizing the distance between the 2 classes. Change in position of any other vector will not affect the 

hyperplane. So, together the hyperplanes H can be defined as follows:  

wxi + b >=  +1  when yi = +1  é(6) 

wxi + b < -1   when yi = -1   é(7) 

All these calculations are done in the svm_train file where a model file is created which stores these weights, bias and 

defines the hyperplane using the 3 values: vmnic0 packets received/sec, vmnic0 packets transmitted/sec, vm1 or vm2 

packets transmitted/sec. 

 

V.   RESULT AND ANALYSI S 

We have considered that, at a time only one VM is under attack. Using the network statistics of vmnic0(virtual NIC 

card) and of the VMs obtained through hypervisor ESXi , we determine which values are valid and invalid. During 

training, we retrieve the files for valid and invalid scenarios in our GUI. Following screen shots from fig.7 to fig.9 show 

the GUI for training stepwise. 

First we retrieve the required files having network statistics for VM1 or VM2 from under the óFile Retrievalô tab. 

Next, under the óTrainingô tab, we have train vm1 data, train vm2 data, view vm1 data, view vm2 data. 

   
Fig. 7 :  Uploading files for training for VM1 and setting valid and invalid values for those files. 

 

Similarly we upload the valid and invalid files of all VMs in training. We can view this under the ôView Trainô option 

under the Training tab. Once they are all uploaded and viewed, we can begin the prediction process where we upload the 

files under óPredictionô tab as shown. 

 
Fig. 8: Uploading prediction files for testing. 

 

 
Fig. 9: Prediction result for scenario -VM1 victim 
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We have tested 3 scenarios after training: 1.When all VMs are safe 2. VM1 is victim 3. VM2 is victim. When the 

ratios of valid/total outputs is calculated, in the case of attacker, one tends to get more of invalid result as itôs packets 

transmission pattern looks similar to that of the victim, even though the attacker is a valid case. Hence a solution was 

developed that for each row,  probability calculation is done before it is determined as whether it is ôvalidô or ôinvalidô. 

That is, some values may be 60% valid, others 90%. This also helps distinguish ôhow muchô a value is valid or invalid 

for classifying more accurately and reduce the false-positives or false-negatives. Below graphs show results of 10 cases 

each, for 3 possible scenarios. We are capturing 30 values for testing at a time using the esxtop command and retrieving 

them through the GUI. In the case of a valid set, the valid output should be more than 50% (i.e. more than 15 values) to 

get the prediction result of SVM as valid and vice-versa. So accuracy is good when this valid:total ratio is higher for 

ósafeô cases and invalid:total ratio is higher in óattackô cases. To know efficiency, we have to test many cases and see 

how many true-positives out of total cases. 

A. Case 1(vm1 and vm2 are safe): In all the 10 cases in fig.10, more than 15 values were always valid, which resulted in 

giving output as valid for all sets. Accuracy was also good as almost 28 or 29 vales out of 30 were valid in each case. 

Accuracy for detecting a safe VM1 = 93.36% and for a safe VM2 = 86.34%. Efficiency = 10 / 10 = 100%. 

 
Fig.10: Result Analysis when both VMs are safe. 

 

B. Case 2(vm1 is under attack and vm2 is safe) : Here, in fig.11 we can see that, in 9 out of 10 cases, valid/total output is 

less than 50% for VM1, indicating that VM1 is having more of invalid outputs, hence it can be determined as 

exhibiting abnormal behaviour. Accuracy for detecting unsafe VM1 = 77.98% Efficiency = 9/10=90%. 

 
Fig.11: Result Analysis for VM1 under attack. 

 

C. Case 3(vm1 is safe and vm2 is under attack) : Similarly, in fig.12, here we have 8 out of 10 cases showing less than 

50% for the valid / total output. In 2 cases (case 2 and 8), we have more than 50% having valid output so the SVM 

algorithm has determined that both VMs are safe. This is a false positive which makes our efficiency less. Accuracy 

for detecting unsafe VM2 = 75.03%. Efficiency= 8 / 10 = 80%. 

 
Fig.12: Result Analysis for VM2 under attack. 
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In order to increase the accuracy rate and efficiency percentage, we can train our model under different cases and include 

as many outliers as possible. 

 

VI.     CONCLUSIONS 

As we have seen, clear detection of safe and unsafe VMs can be done to a great extent with the help of support vector 

machine(SVM) algorithm whose classification depends on the hyperplane created based on vectors lying on its margins. 

Very few outliers and false-positive scenarios would be missed, thereby giving a good efficiency rate for detection. 

Future scope would include trying to combine with existing security to further sturdy the safety of VM.  
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