Volume 6, Issue 6, June 2016 ISSN: 2277 128X
International Journal of Advanced Research in

Computer Science and Software Engineering

Research Pagr
Available online atwww.ijarcsse.com

Detection of VMto-VM Attack using Hypervisor Statistics

www.ijarcsse.com

Nivedita Prem’ K. K. Devadkar
Computer Department InformationTechnology Department
Sarda Patel Institute of Technology Sardar Patel Institute of Technolqgy
Mumbai,Maharashtra, India Mumbai, Maharashtra, India

Abstractd In cloud computing, attacks on the virtual machines (VM) can be of various types. Here we are dealing
with attacks by one VM to another VM using a backdoor virus. Detection has been implemented by using the
centralized unit of the hypervisor (ESXi) in VMware workstation setup which homes these VMs. Training and
running the SVM (support vector machine) learning algorithm using the statistics obtained from ESXi and virtual
machines (VMs), we distinguish whether they are valid or invalid entries. Thus, if majority of the values are invalid,
we alert the respective VM that it is under attack and to recheck its processes.

Keywordsd SVM, Hypervisor ESXi, VMware workstation, virtual machine (VM)

I. INTRODUCTION

Cloud computing is a popular concept that delivers reliable services. Infrastrasmi®ervice (laaS) is one of the 3
models deliveredyocloud computing (PaaS, SaaS, laaS). lakvalclients to increase thaiomputational and storage
resources withounvesting in new hardware. i$ characterized by the concept of resource virtualizatiltonvs hosting
multiple Operatig System (OS)nistances calledirtual machines (VMs) on the same physical server. [@a& model
has three main components hypervisor(ESXi), hosted VMs and a virtual switch (vSwitch). The hosted VMs are
considered the mairoarce of security threats, since the clqurdvider are noaware of their actual contents, amhohot
have much control over these VMs. This makes it easy to seize the hosted VMs and in turn a compromised VM can
attack other hosted VMs, as VMs share the same hardware and hypervisor softwakMSwemnot be trusted from
the cloud provide®perspective to install their security software inside these ¥iklkse itbecomes possible tortger
and alter its behaviour, whether it is by the cloud consumer (the VM owner) or by an external attaclerrétiitional
in-guest security solutions that operate based on the OS kernel trustworthiness do not secure such virtualized systems
thoroughly. In cloud, aOS(Windows, Linux, Mac) on a VM is called a guest operating system. A layer called a VM
monitor ormanager (VMM) creates and controls the VMs. Typically there are two types of VMM. 1.hardware type |
VMM which runs directly without the use of any OStype Il VMM that runs on top of a hosting OS and then spawns
higher level VMs. In VMware, this VMM ohypervisor is given the term ESXi. Using the ESXi, we can see the network
statistics of althe VMs running under it. Using this concepte have created the detection mechanism along with the
SVM algorithm to detect if any of the VM is compromised wittiie ESXi system. The SVM is a learning algorithm
which is in the lines of neural networks. It works based on the training and testing concept. It is considered one of the
better classification algorithngving more accurate outputhe rest of the papes brganied in the following manner.
Section | shows related work with respect to VMware VM attacks and various detection mechanisms. Section Il includes
problem definition and section IIl deals with system architecture explained with flow diagramnS¥ctigplains the
implementation ending with section V which shows result analysis. Conclusion and future scope is given in section VI.

Il. RELATED WORK

In todayds worl d, even hackers have deve liospse heemal wa |
malwares haveifferent points of attack eg. VM, host, hypervisor, whether they were initiated externally or internally,
random or targeted. Keeping all this in view, a new technique was conceived in the virtual environment, where the
detection mechanis was kept outside the system body which fmayse the virus. So in virtuaéid case, we can use the
VMM(Virtual Machine Manager) or hypervisor which tracks all the processes of the VMs to protect it. Fhistloast
box approach was used for Intrusion &tton System (IDS) in a new prototype Livewire[10]designed by T. Garfinkel
and M. Rosenblum from Stanford University. If the IDS resides on the host, it has an excellent view -@ingdimg
host 6s softwar e, but i s hihagg handy if tkeulB resplesiinbtthe enetwornl, it éstntora ¢ k .
resistant to attack, but has a poor view of the inside of host. Hence, they presented an architecture that retains the
visibility of a hostbased IDS, but keeps the IDS outside of the host for graihsek resistance. But a more severe attack
by rootkit cannot be handled. So an analysis for the same was suggested by C. Kruegel, W. Robertson, and G. Vigna[8].
Here, it presents a technique that exploits binary analysis to ascertain, at load timedifles behavior resembles

The behavior of a rootkit. These rootkits are implemented as kernel modules, and do not require modification of
userspace binaries to conceal malicious activity. Also a new type of rootkit came into the picture which waslgandled
prototype given by S. T. King et al. in 2006 [9]. They assumed the perspective of the attacker to understand the
vulnerabilities in system.

© 2016, 1JARCSSE All Rights Reserved Page | 425

http://www.ijarcsse.com/

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),
June- 2016, pp. 425-432
To address tmdholismiot alteitectbpynd mechani sms, VMwat cher,

facilities outside of the protected VM. There exists a concern wivéohing over from irthe-box approach to odf-
the-box calledsemantic gapinstead of seeing semant@vel objects such as processes, files, and kernel modules, we
only see memory pa&g, registers, and disk blocks from outside the VM, making it difficult to detect virus. However,
they gain tamper resistance at the costosinly the native, semantic viewhi¥ gap is resolved by implementing the
guest view casting in VMwatcher(refergfl) where it systematically reconstructs internal semantic views from the
outside in a notintrusive manner. &nantic gapcan be solvedising 2 methods(i) view comparsonbasedmalware
detection and its demonstration in rootkit detection. diit-of-the-box deployment[7] of hostbased antmalware
software with improved detection accuracy and tamnpsistance.

Virtual Machine (VM) Anti-malware systems

Tripwire,

" P antivirus, etc |
—_—__—— [——
%—— VMWatcher

Guest Operating system

VMM / hypervisor HOST 0S

Fig. 1 Architecture of VMWatcher [7]

In 2009, researchers ThonmRsstenpart et al. from the University of California and MIT publishedjpep [1] that
explored mapping thication of clouegbased VMs through network scanning tacfmsud cartography). They used the
fundamentals of cloud cartography to determine thees@ency of a target VM to launch a side chamttgck. Here
since weare dealing with VMwaresesearch was done in the field of VM security without an agent by lbrahim, Hamlyn
Harris, John Grundy and Almorsy [14]. A new type of monitoring appliance was developed for \@Visvaretha!
provides active, transparent,darealtme securityin laaS.This was based on the existing VMsafe libraries. Without
installing any ode inside the VM, it monitorsolatile memory of VM as it will hold imprints of rootkit likéiding
malware. It reconstructkernel data structures which achanging dynamically to warn the VM. Main research was
conducted in the area of mapping the introspectedlde@l raw bytes of memory to highvel OS data structures
instances. Another way of protecting data is by using mobile security agents such égddgcRriyank Singh Hada et
al. [3], which proposed a trust model for cloud integrity and authenticity. They help collect valuable data related
information from VM and safeguard it. Z. Xia et al. [2] proposed a hardeaftevare framework in 2013 using
HyperCoffer and VMshim. HyperCoffer only trusts the processor chip and makes no security assumption on external
memory and devices. Solaimani et @liblisheda papefl5] in 2014 which take into account various statistical factors
using vSphere Guest API tollect them. Information shown loel can be collected by the SDiterface: 1.Maximum
speed of VR RBeservEdPrate of VM executioB. Elapsed time since tHéM was last powered on or resét
Number of CPU shares assighedCRU time consumedby particul ar VM. Al | this dat
CPUs are running compared to host CPUs. Memory related metrics are also collected: 1.Reserved Memory 2.Memory
being used by VM. 3Upper limit of memory available. They also used mpstat & vmetget CPU and memory data.
Their outputs were integrated with that of vSphere Guest SDK using Kafka API for analysis.

Keeping the above pros and cons of the existing system, we have conceptualised an idea which involves the ESXi as
manager to capture thatad regarding the VMs inside it. Since ESXi can look partially into the network statistics of the
virtual machines, we use this as a point to analyse the behaviour of the VM.

lll. SYSTEM DESIGN
A. Problem Definition
To detect a trojan attack on the virtual tiae(VM) by another VM residing inside the same hypervisor (ESXi).

Detection is done using VM statistics collected by ESXi and the host system which are both assumed to be
uncompromised.

B. System Architecture
The entire architecture is built on the host @Svindows 8.1 having 16GB RAM, in order to be able to hoshyn
VMs on top of the VMware setup. Inside host OS, we have installed VMware workstation and vSphere Client to view the
machines that are created inside the workstation. As seen in the fig. iaveehe setup of VMware consisting of
following components:
1) VMwware workstation This is where the virtual machines are created. These VMs can have directly any OS
installed inside them using CD or .iso. They can also become?tigypervisors (softwargpe) using the ESXi.iso.
In order to access these inside VMs, we need to assign them an IP address through bridging or NATing. Then we can
externally access to see their consoles using putty or vSphere client. Storage space and RAM for each is assigned
virtually from the main host.

© 2016, 1JARCSSE All Rights Reserved Page | 426

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),

June- 2016, pp. 425-432

window:
server
003

ESXi

vNIC

[VMware workstation]

NIC [

Host OS (Windows 8.1)]

Fig. 2 VMware Architecture

2) ESXi This is the hypervisor (a reduced linux shell) which can house many VMs. In our case we have 3 VMs
windows 2003 servers and 1 ubuntu desktop. ESXi enable only little view inside theWkigsuty statistics can be
retrieved using the esxtop command through putty. Virtual standard switch (vSS) and virtual network interface card
(VNIC) provide the connectivity between VMs on the same host or on different hosts and each VM will have a vNIC
with it. In our case since theigonly one VM with ESXi installed, on top eforkstation, all VMs inside share the

same VNIC.

3) vSphere ClientThis is a tool given by VMware to see the consoles of the VMs (especially for the servers). It only
requires IP andisername/password to logon and get the system for his/her disposal. l1aaS is seen clearly in this

environment.

C. Flow of Proposed System

On VMware Workstation,
create a hypervisor (ESXi),

Obtain the network statistics
of VMs, vNIC by changing

then create VMs on top of —* the configuration file to
ESXi with windows server capture only these through
OS. ubuntu etc. the ESXi command shell.
Train the SVM algorithm]
Sda i i hoamal® Using esxtop command.
B : capture data in batches of
states for all VMs. This ST : =
defines classes —invalid & [30 with interval of 3 secs.
T — Retrieve this file from ESXi
classification of data. tothe procesting code:
Upload file containing new This data set is matched
data for prediction for with the trained output set
whichever VM needs to be " intemally and each point is
checked for valid /invalid classified as valid or invalid
state
/“l\%
/“/ K“x
y N
V /
/ Checkif (valid N\
V4 outputs/ total N\
VMisinfected! |«—<£ >
N outputs) == V4
N\ St Y
W 50% Y 4
‘%,)\z 4\"‘,‘."
-
\ /
VMis safe!

Fig. 3: Flow of Detectioisystem.

© 2016, 1JARCSSE All Rights Reserved

Page | 427

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),
June- 2016, pp. 425-432
We elaborate the steps seen in the flow of detection system (refer fig. 3) as:follo
1) Setup of VMware: As seen in system archictecture sectiorkknee how each of the components are plageter
fig.2). So here, we have 3 VMs insde the ESXi 5.0. First we setup a trojan attack mechanism asidén®iVMs
using the MoSucker.iso.
2) Certain network parameters are affected by the virus. So we mibdifgonfig file (using esxtop) to retain only the
network statistics and get the file through FTP.
3) Training the SVM before prediction: irt, get the network statsuch as packets received/sepackets
transmitted/sec etc. farormal behaviour of VMs and vNI€om ESXi. Upload this file for valid training case. Then
put one of the VMs under attack by another VM. Collect the statistics again and upload these for the invalid case for
that particlar VM which was victim.
4) We do this training for each of the VMs for their own valid and invalid scenarios. For capturibgitfiieg data we
run an esxtogommandm a batch modeNow SVM algorithm takeg sample data points and defines 2 classes with
the most optimised hyperplane separating the classes witlrtfesti margin possible.
5) Next, we capture and give to the prediction algorithm, any unknown set of values at a given point in time of a
particular VM to predict if it is under attack or notn&we do not test with single valumit multiplevalues in any
set, we will not get a definite 'valid or ‘invalid' for all the values. There may be few 'valid' among invalid values and
vice versa too. Hence we have defined a threshold\é6 5®valid valies above which the VM is safe.

IV. IMPLEMENTATION OF DE TECTION SYSTEM
There are 2 parts in execution of any security scetfimsiosetup the attack parameters and then detect the breach in
security.

A. Infection by MoSucker Trojan

Here we are using a haaktesting tool for creating a virus which is compressed as a stub for deployment. MoSucker
tool is generally used by learners for testing and as a hacking environment to experiment on. Once this stub (.exe file) is
doubleclicked on inside the victim VMthe process opens a port in background of victim using his IP address enabling
remote attacker to communicate. It may display a random error message suggesting that the file may be corrupted or not
working. Seeing this message the user may delete th&diie his system unaware of the open port running in the
background. The port no. can also be gigrattackeiduring the time of constructing the virus

B. Detection Mechanism
In general, security is given by 3 basic meamgernal systems, hypervisor-gouest system. Thenternal system

comprises of antirus, firewalls etc. Next are the external systems which can be threat detection and protection codes

running in an external entipr another VM) which would analyse certain codes of the VMs to détinetre has been a

compromise. Eg: VirtualizatieAware Security Solutions (VASSs$uch VASSs have the ability to monitor and protect

the hosted VMs, without installing any security code inside.

Fig. 4:MoSucker GUI for establishing and monitoring/iffezing with thevictim. The IP address and port no. are used
to access the victim.

Last is the hypervisor itself trying to send some kind of signal to the Vivt@mes across unusual behavidere in
the last case, we assume the hypervisor is higtaiepted. We have used the internal ability of the hypervisor to see the
network data of the VM to detect any abnofmstatistics We have captured only necessary data by modifying the
configuration file which has many other statistics. This isaioletd bythe esxtopcommandBy typing letters ‘c'i', 'm'
etc.,we retrieve the details of cpu utilisatianterrupts, memory statistics etc. We can choose to have required fields as
ON and turn OFF the others. This modified config file can be stored in arlottaion, default being ./esxtoprc50
(system file). Now using this new config file, we run the esxtop command in batch mode with a time interval of 3 secs
between 20 iterations. This is stored as a .csV filetinpgolder.

esxtop-b -d 3-n-30-c confg02 > /tmp/result02.csv

© 2016, 1JARCSSE All Rights Reserved Page | 428

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),
June- 2016, pp. 425-432

The SVM detection is launched after retrieving this file data from the ESXi through FTP. This is a manual trigger.
Once this is done, it internally generates a file which extracts only those columns from the statistic talde¢hatrad,
and shows the location where it has been downloaded. So using this information, we train the algorithm for the specific
VM for both valid and invalid values. Now, in future, for a fresh unknown set of values of the concerned VM, we can
predictthe outcome based oretlrained data. If more than%0values are invalid or valid, then the VM is under attack
or safe respectively.

C. What is SVM?
Out of the many classifiers, this had gained popularity in recent times due tariiadeeapability andaccuracyfor
smaller sets. SVMs, a discriminative learnimgsedapproach, classify inputs (eg:words) into categoriespéets of
speech) based on a feature or training set. SVM creates a hyperplane for all the linear points. Also, advantage is non
linear input is converted mathematically using a kernel function to allow linear separation of the points from different
categories.
Y

F
[] []
£ ° .
& []
=
B1 _% []
<
El
=
E
g
B2 =§ Margin
] e []
=
8 [)
3
g L] : 2
; e @ Valid points
e > ® Invalid points
X Co-ordinates for valid and invalid points X === Hyperplane Bl wi.th larger margin.
e Hyperplane B2 with smaller margin

Fig. 5. SVM classification for a set of points and the hyperplanes

In the simplest twevalue scenario, a straight line wduteparate them in an XY plot.In-&dtribute scenario, the
separator will be an () hyperplane. The most commonly used kernel function is a Gaussian (the basic normal
distribution function). As seen in fi¢, the 2 widths on either side of the hypergail is what makes the margin. The
separation process selects a subset of the training data that best differentiates the categories i.e. data pointiseclosest to
hyperplane which are known here are the supporting vectors. The support vectors liedgeshef ¢he street. Changing
these support vectors will change the equation of the hyperplane. In SVM, the separating hyperplane maximizes the
distance to support vectors from both classes thereby giving a good accuracy rate for classification ofptintslata
Consider x1x2, x3é xn to be the inputs and y to be output. We have set of weightswy(ame for each feature, whose
linear combination predicts the lua of y. Thedecision surface separating the classes is a hyperplane. The plane H
the central line (median) in between, which is given by

Howx +b=0 é (1)
where w is a weight vector, x is input vector, b is bias

Fig. 6: Equations of hyperplanes and margins

As seen in the fig.6 the central hyperplane can also be defined as follow:
wx + b >= 0 for d; = +1 e(2)
wx +b<0ford=-1 é(3)
d+ is the shortest distance to the closest positive peisttHe shortest distance to the closest negative point. The margin
(gutter) of a separating hyperplane is (d+) 4.(Hence the 2 adgent hyperplanes;tand H are :
Hy wx+b=+1 e(4)
Hz wx +b=-1 e(5)

© 2016, 1JARCSSE All Rights Reserved Page | 429

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),
June- 2016, pp. 425-432
The points lying on the outlining hyperplanes H1 and H2 are the support vectors and only their weights will
determine in maximizing the distance between the 2 claskasg€ in position of any other vector will not affect the
hyperplaneSo, together the hyperplanes H can be defined as follows:
wx + b >= +1 wheny=+1 e (6)
wx +b<-1 wheny=-1 e(7)
All these calculations are done in the strain file whee a model file is created which stores these weights, bias and
defines the hyperplane using the 3 valuesnicO packets received/sec, vmnicO packets transmitted/sec, vml or vm2
packets transmitted/sec.

V. RESULT AND ANALYSI S
We have considered that, atime only one VM is under attack. Using the network statistics of vmnicO(virtual NIC
card) and of the VMs obtained through hypervisor ESXi , we determine which values are valid and invalid. During
training, we retrieve the files for valid and invalid sagosin our GUI. Bllowing screen shots from figio fig.9 show
the GUI for training stepwise.
First we etrieve the required flekavi ng net wor k statistics for VM1 or V

Next, uhdairnitmegd 6t aviml data gainlvra2vdata, viewarmlndataywiem?2 data.
Prediction Training File Retrieval ~ Logout Prediction Training File Retrieval Logout
Training-vm1 Training-vm1
Select a file to upload: Select a file to upload:
Choose File | result_vm1-valid.csv Choose File | result_vm1-invalid.csv
Valid X Invalid
Upload File Upload File

Fig. 7: Uploading files for training foM1 and setting valid and invalid values for those files.

Similarly we upload the valid and invalid files of all VMs in training. We can view thieund t he &6 Vi ew Tr a
under the Training talOnce they are all uploaded and viewed, we can begin the prediction process where we upload the
files under OPredictiond tab as shown.

Prediction Training File Retrieval Logout

File Upload

Select a file to upload:
Vmi :
Choose File | result_vm1-invalid.csv

vm2 :
Choose File | result_vm2 valid attacker.csv

Upload File

Fig. 8 Uploading prediction files for testing.

Prediction Training File Retrieval Logout

vm1 is under attack and vm2 is safe

vml vm2
vmnic0 vmnic0
vmnic0 Packets Packets vinl Packets vmnic0 Packets Packets vin2 Packets
Id Transmitted/sec Received/sec Transmitted/sec Status Id Transmitted/sec Received/sec Transmitted/sec Status
1 42 135.52 0 invalid 1 42 135.52 0 valid
2 6432 163.74 0.98 invalid 2 64.32 163.74 0.98 valid
3 2494 113.21 0.33 invalid 3 2494 113.21 0.33 valid
4 37.08 1201 0.33 invalid 4 37.08 1201 0.66 valid
5 345 127.71 0.66 invalid 5 345 12871 1 valid
6 66.29 165.71 0.33 invalid 6 66.29 165.71 0 valid
7 29.2 91.88 0.33 invalid 7 292 91.88 0.66 valid
8 6333 1726 0.33 invalid 8 63.33 1726 0.33 valid
9 5743 156.2 0.33 invalid 9 5743 156.2 0.66 valid
10 76.46 158.49 033 invalid 10 76.46 158.49 0.33 valid
11 41.35 120.76 0.66 invalid 41.35 120.76 0.98 valid

11
Fig. 9 Predction result for scenarieVM1 victim

© 2016, 1JARCSSE All Rights Reserved Page | 430

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),
June- 2016, pp. 425-432
We have tested 3 scenariafier training: IWhen all VMs are safe 2. VM1 is victim 3. VM2 is victihen the
ratios of valid/total outputs is calculated, in the case of attacker, one tends to get more of invalid resultad s p ac k
transmission pattern looks similar to that of the victim, even though the attacker is a valid case. Hence a solution was
developed that for each row, probability calculddion
That i s, some values may be 60% valid, ot hers 90 %. Thi
for classifying more accurately and reduce the falssitives or falseegativesBelow graphs show results of t@ses
each, for Jossible scenario®Ve are capturing 30 values for testing at a time using the esxtop command and retrieving
them throughthe GUI.In the case of a valid set, the valid output should be more than 50% (i.e. more than 15 values) to
get the prediction resutif SVM as validand viceversa So accuracy is good whehis valid:total ratio is highe for
6safed invalg®talr anido i s h icgshseTo kriow effidientyt we havé to test many cases and see
how many truepositives out of total case
A. Case I¥yml and vm2 are saf In all the 10 cases iiig.10, more than 15 values were always valid, which resulted in
giving output as valid for all sets. Accuracy was also good as almost 28 or 29 vales out of 30 were valid in each case.
Accuracy for deecting a safe VM1 = 93.36% and for a safe VM2 = 86.34%. Efficiency = 10/ 10 = 100%.

When VMs are safe

120

100

80
60
40
20

0

1 2 3 4 53 6 Tt 8 9 10

% of (valid outputs/ total outputs)

mvml| 933 | 100 | 100 | 90 |93.3 | 747 | 86.7 | 96.7 | 100 | 96.7
mvm2| 90 | 967 | 100 | 767 [933 | 90 | 76.7 70 | 86.7 833

Fig.10 Result Analysis when both VMs are safe.

B. Case 2¢ml is under attack and vm2 is gafélere, infig.11 we can see that, in 9 out of 10 cases, valid/total oigput
less than 50%or VM1, indicating that VM1 is having more of invalid outputs, hence it can be determined as
exhibiting abnormal behaviour. Accuracy for detecting unsafe VM1 = 77.98% EfficieB(40-00%.

When VM1 is victim

% of (valid outputs/total outputs)

il 2 3 4 5 6 7 8 9 10
mymlvictim| 30 333|167 20 10 | 66.7 | 16.7 | 333 (133 | 10

Hvm2 823 | 667 | 733:| 76:7 |'83.3 |76 | 933 | 90 |93:3(70

Fig.11 Result Analysis for VM1 under attack.

C. Case 3¢ml is safe and vm2 is under attacKimilarly, in fig.12, here we have 8 out of 10 cases showing less than
50% for the valid / total output. In 2 cases (case 2 and 8), we have more than 50% having valid output so the SVM
algorithm has determidethat both VMs are safe. This is a false positihich makes our efficiency lesccuracy
for detecting unsafe VM2 = 75.9@ Efficiency= 8/ 10 = 80%.

When VM2 is victim

120

% of (valid output/total outputs)

al 2 3 4 5 6 7 8 9 10
mvml 90 [93.3|96.7 8.7 | 90 | 76.7 | 833|833 | 733|867

mym2-victim| 133 | 56.7 | 26.7 | 6.67 | 23.3 | 16.7 | 13.3 | 633 | 20 10

Fig.12 Result Analysis for VM2 under attack.
© 2016, 1JARCSSE All Rights Reserved Page | 431

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),
June- 2016, pp. 425-432
In order to increase the accuracy rate and efficipecgentage, we can train our model under different cases and include
as many outliers as possible.

VI. CONCLUSIONS
As we have seen, clear detection of safe and unsafe VMs can be dogee&b extent with the help stipport vector
machine(SVM) algorithmvhose classification depends on the hyperplane created based on vectors lying on its margins.
Very few outliers and falspositive scenarios would be missed, thereby giving a good efficiency rate for detection.
Future scope would include tryiig combinewith existing security to further sturdy the safety of VM.

REFERENCES

[1] Thomas Ristenpart , Eran Tromer , Hovav Shacham , Stefan Savage, Hey, you, get off of my cloud: exploring
information leakage in thirgparty compute cloudfroceedings of the 16th ACconference on Computer and
communications securitiNovember 09.3,2009.

[2] Y. Xi a, Y. L i Architecture dSupport forCQueinansparent VM Protection from Untrusted
Hypervisor and |IBEEy1S9th tnterhatiosat Syenpokisn, an High Penmiance Computer
Architecture pp. 246257, Feb, 2013.

[3] Priyank Singh Hada, Ranjita Singh and Mukul Manmohan. Article: Security Agents: A Mobile Agent based
Trust Model for Cloud Computingnternational Journal of Computer Applicatign36(12):1215, Decerher
2011.

[4] Hanqgi an Wu; Y i Di ng; Wi ner , Cc. ; Li Yao, ONet wor k
Computer Sciences and Convergence Information Technology (ICCIT) , 2010 5th International Conference on
vol.,, no., pp.18,21, Nov. 30 201%ec. 2 D10

[5] Garfinkel T, Rosenblum M (2005) When virtual is harder than real: Security challenges in virtual machine based
computing environments. IRroceedings of the 10th conference on Hot Topics in Operating Systems, Santa Fe,
NM. volume 10. USENIX AssociatioBerkeley, CA, USA, pp 227229.

[6] Xiongwei Xi e; Wei chao Wang, ORoot kit detection on
hypervisor levelCommunications and Network Security (CNS), 2013 IEEE Conferencevabn no.,
pp.498,503, 146 Oct.2013

[7] X. Jiang, X. Wang, and D. Xu, Stdajt malware detection through vrabased oubf-the-box semantic view
reconstruction, iMCM CC$ 2007, pp. 128138

[8] C. Kruegel, W. Robertson, and G. Vigna, Detecting kelmadl rootkits through binary analysis, Annual
Computer Security Applications Conferenzé04

[9] King, S. T.; Chen, P. M., 0OSubVirt: Seountyl aachReivaty,i2006 ma l
IEEE Symposium oywvol., no., pp.14 pp.,327, 224 May 2006.

[10] T. Garfinkel and M. Rosenblum. Ailual Machine Introspection Based Architecture for Intrusion Detection.
Proc. of the 2003 Network and Distributed System Security Symposium, Feb. 2003.

[11] VMware Knowledge Basehttp://kb.vmware.com/

[12] Gorka Irazoqui Apecechea and Mehmet Sinan Inciand Th&ias e nbar t h and Ber k- Sunai
VM Attacks on Xen and VMware are possible!, o0 Crypto

[13] NIST Cloud Computing Standards Roadmap NIST Special PublicatiorR@ONIST Cloud Computing
Reference Architecter, September 2011.

[14] Ibrahim, AS.;HamlyfHar r i s, J. ; Gr undy, -Sédcotsacuritymbnitayimgappliancéfor, o0 C
Virtual Machi nes i nNetwankeand| Syste® Seculrrity (NSS),n20dl e5th , Inkernational
Conference onvol., no., pp.113,120, @ Sept. 2011.

[15] Sol ai mani , M. ; I ftekhar, M. ; Khan, L. ; Thuraisingh

using Spark over heterogeneous data frommultiur ce V Mwar e pBRigrDhta (BighRatay, 2014d at a
IEEE Interndional Conference gnvol., no., pp.1086,1094, 230 Oct 2014.

© 2016, 1JARCSSE All Rights Reserved Page | 432

