
© 2016, IJARCSSE All Rights Reserved Page | 425

 Volume 6, Issue 6, June 2016 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Detection of VM-to-VM Attack using Hypervisor Statistics
 Nivedita Prem

*
 K. K. Devadkar

 Computer Department Information Technology Department

Sardar Patel Institute of Technology, Sardar Patel Institute of Technology,

 Mumbai, Maharashtra, India Mumbai, Maharashtra, India

Abstractð In cloud computing, attacks on the virtual machines (VM) can be of various types. Here we are dealing

with attacks by one VM to another VM using a backdoor virus. Detection has been implemented by using the

centralized unit of the hypervisor (ESXi) in VMware workstation setup which homes these VMs. Training and

running the SVM (support vector machine) learning algorithm using the statistics obtained from ESXi and virtual

machines (VMs), we distinguish whether they are valid or invalid entries. Thus, if majority of the values are invalid,

we alert the respective VM that it is under attack and to recheck its processes.

Keywordsð SVM, Hypervisor ESXi, VMware workstation, virtual machine (VM)

I. INTRODUCTION

Cloud computing is a popular concept that delivers reliable services. Infrastructure-as-a-Service (IaaS) is one of the 3

models delivered by cloud computing (PaaS, SaaS, IaaS). IaaS allows clients to increase their computational and storage

resources without investing in new hardware. It is characterized by the concept of resource virtualization allows hosting

multiple Operating System (OS) instances called virtual machines (VMs) on the same physical server. The IaaS model

has three main components: a hypervisor (ESXi), hosted VMs and a virtual switch (vSwitch). The hosted VMs are

considered the main source of security threats, since the cloud provider are not aware of their actual contents, and donot

have much control over these VMs. This makes it easy to seize the hosted VMs and in turn a compromised VM can

attack other hosted VMs, as VMs share the same hardware and hypervisor software. Such VMs cannot be trusted from

the cloud providersô perspective to install their security software inside these VMs since it becomes possible to tamper

and alter its behaviour, whether it is by the cloud consumer (the VM owner) or by an external attacker. Hence, traditional

in-guest security solutions that operate based on the OS kernel trustworthiness do not secure such virtualized systems

thoroughly. In cloud, a OS(Windows, Linux, Mac) on a VM is called a guest operating system. A layer called a VM

monitor or manager (VMM) creates and controls the VMs. Typically there are two types of VMM. 1.hardware type I

VMM which runs directly without the use of any OS 2. type II VMM that runs on top of a hosting OS and then spawns

higher level VMs. In VMware, this VMM or hypervisor is given the term ESXi. Using the ESXi, we can see the network

statistics of all the VMs running under it. Using this concept, we have created the detection mechanism along with the

SVM algorithm to detect if any of the VM is compromised within the ESXi system. The SVM is a learning algorithm

which is in the lines of neural networks. It works based on the training and testing concept. It is considered one of the

better classification algorithms giving more accurate output. The rest of the paper is organized in the following manner.

Section I shows related work with respect to VMware VM attacks and various detection mechanisms. Section II includes

problem definition and section III deals with system architecture explained with flow diagram. Section IV explains the

implementation ending with section V which shows result analysis. Conclusion and future scope is given in section VI.

II. RELATED WORK

In todayôs world, even hackers have developed malware capable of detecting 150 or more anti viruses. These

malwares have different points of attack eg. VM, host, hypervisor, whether they were initiated externally or internally,

random or targeted. Keeping all this in view, a new technique was conceived in the virtual environment, where the

detection mechanism was kept outside the system body which may house the virus. So in virtualized case, we can use the

VMM(Virtual Machine Manager) or hypervisor which tracks all the processes of the VMs to protect it. This out-of-the-

box approach was used for Intrusion Detection System (IDS) in a new prototype Livewire[10]designed by T. Garfinkel

and M. Rosenblum from Stanford University. If the IDS resides on the host, it has an excellent view of going-ons in

hostôs software, but is highly susceptible to attack. On the other hand, if the IDS resides in the network, it is more

resistant to attack, but has a poor view of the inside of host. Hence, they presented an architecture that retains the

visibility of a host-based IDS, but keeps the IDS outside of the host for greater attack resistance. But a more severe attack

by rootkit cannot be handled. So an analysis for the same was suggested by C. Kruegel, W. Robertson, and G. Vigna[8].

Here, it presents a technique that exploits binary analysis to ascertain, at load time, if a modules behavior resembles

The behavior of a rootkit. These rootkits are implemented as kernel modules, and do not require modification of

userspace binaries to conceal malicious activity. Also a new type of rootkit came into the picture which was handled by

prototype given by S. T. King et al. in 2006 [9]. They assumed the perspective of the attacker to understand the

vulnerabilities in system.

http://www.ijarcsse.com/

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),

June- 2016, pp. 425-432

© 2016, IJARCSSE All Rights Reserved Page | 426

To address the limitation by óin-houseô detection mechanisms, VMwatcher, advocate placing the malware detection

facilities outside of the protected VM. There exists a concern when switching over from in-the-box approach to out-of-

the-box called semantic gap. Instead of seeing semantic-level objects such as processes, files, and kernel modules, we

only see memory pages, registers, and disk blocks from outside the VM, making it difficult to detect virus. However,

they gain tamper resistance at the cost of losing the native, semantic view. This gap is resolved by implementing the

guest view casting in VMwatcher(refer fig.1) where it systematically reconstructs internal semantic views from the

outside in a non-intrusive manner. Semantic gap can be solved using 2 methods: (i) view comparison-based malware

detection and its demonstration in rootkit detection. (ii) out-of-the-box deployment [7] of host-based anti-malware

software with improved detection accuracy and tamper-resistance.

Fig. 1: Architecture of VM-Watcher [7]

In 2009, researchers Thomas Ristenpart et al. from the University of California and MIT published a paper [1] that

explored mapping the location of cloud-based VMs through network scanning tactics (cloud cartography). They used the

fundamentals of cloud cartography to determine the co-residency of a target VM to launch a side channel attack. Here

since we are dealing with VMware, research was done in the field of VM security without an agent by Ibrahim, Hamlyn-

Harris, John Grundy and Almorsy [14]. A new type of monitoring appliance was developed for VMwareôs VM that

provides active, transparent, and realtime security in IaaS. This was based on the existing VMsafe libraries. Without

installing any code inside the VM, it monitors volatile memory of VM as it will hold imprints of rootkit like hiding

malware. It reconstructs kernel data structures which are changing dynamically to warn the VM. Main research was

conducted in the area of mapping the introspected low-level raw bytes of memory to high-level OS data structures

instances. Another way of protecting data is by using mobile security agents such as described by Priyank Singh Hada et

al. [3], which proposed a trust model for cloud integrity and authenticity. They help collect valuable data related

information from VM and safeguard it. Z. Xia et al. [2] proposed a hardware-software framework in 2013 using

HyperCoffer and VM-shim. HyperCoffer only trusts the processor chip and makes no security assumption on external

memory and devices. Solaimani et al. published a paper[15] in 2014 which take into account various statistical factors

using vSphere Guest API to collect them. Information shown below can be collected by the SDK interface: 1.Maximum

speed of VMôs CPU. 2. Reserved rate of VM execution. 3. Elapsed time since the VM was last powered on or reset 4.

Number of CPU shares assigned. 5. CPU time consumed by a particular VM. All this data estimates how fast the VMsô

CPUs are running compared to host CPUs. Memory related metrics are also collected: 1.Reserved Memory 2.Memory

being used by VM. 3. Upper limit of memory available. They also used mpstat & vmstat to get CPU and memory data.

Their outputs were integrated with that of vSphere Guest SDK using Kafka API for analysis.

Keeping the above pros and cons of the existing system, we have conceptualised an idea which involves the ESXi as

manager to capture the data regarding the VMs inside it. Since ESXi can look partially into the network statistics of the

virtual machines, we use this as a point to analyse the behaviour of the VM.

III. SYSTEM DESIGN

A. Problem Definition

To detect a trojan attack on the virtual machine(VM) by another VM residing inside the same hypervisor (ESXi).

Detection is done using VM statistics collected by ESXi and the host system which are both assumed to be

uncompromised.

B. System Architecture

The entire architecture is built on the host OS of windows 8.1 having 16GB RAM, in order to be able to host many

VMs on top of the VMware setup. Inside host OS, we have installed VMware workstation and vSphere Client to view the

machines that are created inside the workstation. As seen in the fig. 2, we have the setup of VMware consisting of

following components:

1) VMwware workstation: This is where the virtual machines are created. These VMs can have directly any OS

installed inside them using CD or .iso. They can also become type-2 hypervisors (software type) using the ESXi.iso.

In order to access these inside VMs, we need to assign them an IP address through bridging or NATing. Then we can

externally access to see their consoles using putty or vSphere client. Storage space and RAM for each is assigned

virtually from the main host.

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),

June- 2016, pp. 425-432

© 2016, IJARCSSE All Rights Reserved Page | 427

Fig. 2: VMware Architecture

2) ESXi: This is the hypervisor (a reduced linux shell) which can house many VMs. In our case we have 3 VMs- 2

windows 2003 servers and 1 ubuntu desktop. ESXi enable only little view inside the VMs but many statistics can be

retrieved using the esxtop command through putty. Virtual standard switch (vSS) and virtual network interface card

(vNIC) provide the connectivity between VMs on the same host or on different hosts and each VM will have a vNIC

with it. In our case since there is only one VM with ESXi installed, on top of workstation, all VMs inside share the

same vNIC.

3) vSphere Client: This is a tool given by VMware to see the consoles of the VMs (especially for the servers). It only

requires IP and username/password to logon and get the system for his/her disposal. IaaS is seen clearly in this

environment.

C. Flow of Proposed System

Fig. 3: Flow of Detection System.

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),

June- 2016, pp. 425-432

© 2016, IJARCSSE All Rights Reserved Page | 428

 We elaborate the steps seen in the flow of detection system (refer fig. 3) as follows:

1) Setup of VMware: As seen in system archictecture section, we know how each of the components are placed (refer

fig.2). So here, we have 3 VMs insde the ESXi 5.0. First we setup a trojan attack mechanism inside one of the VMs

using the MoSucker.iso.

2) Certain network parameters are affected by the virus. So we modify the config file (using esxtop) to retain only the

network statistics and get the file through FTP.

3) Training the SVM before prediction: First, get the network stats such as packets received/sec, packets

transmitted/sec etc. for normal behaviour of VMs and vNIC from ESXi. Upload this file for valid training case. Then

put one of the VMs under attack by another VM. Collect the statistics again and upload these for the invalid case for

that particular VM which was victim.

4) We do this training for each of the VMs for their own valid and invalid scenarios. For capturing this training data we

run an esxtop command in a batch mode. Now SVM algorithm takes in sample data points and defines 2 classes with

the most optimised hyperplane separating the classes with the largest margin possible.

5) Next, we capture and give to the prediction algorithm, any unknown set of values at a given point in time of a

particular VM to predict if it is under attack or not. Since we do not test with single value but multiple values in any

set, we will not get a definite 'valid or 'invalid' for all the values. There may be few 'valid' among invalid values and

vice versa too. Hence we have defined a threshold of 50\% of valid values, above which the VM is safe.

IV. IMPLEMENTATION OF DE TECTION SYSTEM

There are 2 parts in execution of any security scenario-first setup the attack parameters and then detect the breach in

security.

A. Infection by MoSucker Trojan

Here we are using a hacker testing tool for creating a virus which is compressed as a stub for deployment. MoSucker

tool is generally used by learners for testing and as a hacking environment to experiment on. Once this stub (.exe file) is

double-clicked on inside the victim VM, the process opens a port in background of victim using his IP address enabling

remote attacker to communicate. It may display a random error message suggesting that the file may be corrupted or not

working. Seeing this message the user may delete the file from his system unaware of the open port running in the

background. The port no. can also be given by attacker during the time of constructing the virus.

B. Detection Mechanism

In general, security is given by 3 basic means- external systems, hypervisor, in-guest system. The internal system

comprises of antivirus, firewalls etc. Next are the external systems which can be threat detection and protection codes

running in an external entity (or another VM) which would analyse certain codes of the VMs to detect if there has been a

compromise. Eg: Virtualization-Aware Security Solutions (VASSs). Such VASSs have the ability to monitor and protect

the hosted VMs, without installing any security code inside.

Fig. 4: MoSucker GUI for establishing and monitoring/interfering with the victim. The IP address and port no. are used

to access the victim.

Last is the hypervisor itself trying to send some kind of signal to the VM if it comes across unusual behavior. Here in

the last case, we assume the hypervisor is highly protected. We have used the internal ability of the hypervisor to see the

network data of the VM to detect any abnormal statistics. We have captured only necessary data by modifying the

configuration file which has many other statistics. This is obtained by the esxtop command. By typing letters 'c', 'i', 'm'

etc., we retrieve the details of cpu utilisation, interrupts, memory statistics etc. We can choose to have required fields as

ON and turn OFF the others. This modified config file can be stored in another location, default being ./esxtoprc50

(system file). Now using this new config file, we run the esxtop command in batch mode with a time interval of 3 secs

between 20 iterations. This is stored as a .csv file in a tmp folder.

esxtop -b -d 3 -n -30 -c config02 > /tmp/result02.csv

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),

June- 2016, pp. 425-432

© 2016, IJARCSSE All Rights Reserved Page | 429

The SVM detection is launched after retrieving this file data from the ESXi through FTP. This is a manual trigger.

Once this is done, it internally generates a file which extracts only those columns from the statistic table that are required,

and shows the location where it has been downloaded. So using this information, we train the algorithm for the specific

VM for both valid and invalid values. Now, in future, for a fresh unknown set of values of the concerned VM, we can

predict the outcome based on the trained data. If more than 50% values are invalid or valid, then the VM is under attack

or safe respectively.

C. What is SVM?

Out of the many classifiers, this had gained popularity in recent times due to its learning capability and accuracy for

smaller sets. SVMs, a discriminative learning-based approach, classify inputs (eg:words) into categories (eg:parts of

speech) based on a feature or training set. SVM creates a hyperplane for all the linear points. Also, advantage is non-

linear input is converted mathematically using a kernel function to allow linear separation of the points from different

categories.

Fig. 5. SVM classification for a set of points and the hyperplanes

In the simplest two-value scenario, a straight line would separate them in an XY plot.In N-attribute scenario, the

separator will be an (N-1) hyperplane. The most commonly used kernel function is a Gaussian (the basic normal

distribution function). As seen in fig. 5, the 2 widths on either side of the hyperplane B1 is what makes the margin. The

separation process selects a subset of the training data that best differentiates the categories i.e. data points closest to the

hyperplane which are known here are the supporting vectors. The support vectors lie on the edges of the street. Changing

these support vectors will change the equation of the hyperplane. In SVM, the separating hyperplane maximizes the

distance to support vectors from both classes thereby giving a good accuracy rate for classification of the data points.

Consider x1, x2, x3éxn to be the inputs and y to be output. We have set of weights w(or wi), one for each feature, whose

linear combination predicts the value of y. The decision surface separating the classes is a hyperplane. The plane H0 is

the central line (median) in between, which is given by

H0: wxi + b = 0 é(1)

where w is a weight vector, x is input vector, b is bias

Fig. 6: Equations of hyperplanes and margins

As seen in the fig.6 the central hyperplane can also be defined as follow:

wxi + b >= 0 for di = +1 é(2)

wxi + b < 0 for di = -1 é(3)

d+ is the shortest distance to the closest positive point d- is the shortest distance to the closest negative point. The margin

(gutter) of a separating hyperplane is (d+) + (d-). Hence the 2 adjacent hyperplanes H1 and H2 are :

H1: wxi + b = +1 é(4)

H2: wxi + b = -1 é(5)

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),

June- 2016, pp. 425-432

© 2016, IJARCSSE All Rights Reserved Page | 430

The points lying on the outlining hyperplanes H1 and H2 are the support vectors and only their weights will

determine in maximizing the distance between the 2 classes. Change in position of any other vector will not affect the

hyperplane. So, together the hyperplanes H can be defined as follows:

wxi + b >= +1 when yi = +1 é(6)

wxi + b < -1 when yi = -1 é(7)

All these calculations are done in the svm_train file where a model file is created which stores these weights, bias and

defines the hyperplane using the 3 values: vmnic0 packets received/sec, vmnic0 packets transmitted/sec, vm1 or vm2

packets transmitted/sec.

V. RESULT AND ANALYSI S

We have considered that, at a time only one VM is under attack. Using the network statistics of vmnic0(virtual NIC

card) and of the VMs obtained through hypervisor ESXi , we determine which values are valid and invalid. During

training, we retrieve the files for valid and invalid scenarios in our GUI. Following screen shots from fig.7 to fig.9 show

the GUI for training stepwise.

First we retrieve the required files having network statistics for VM1 or VM2 from under the óFile Retrievalô tab.

Next, under the óTrainingô tab, we have train vm1 data, train vm2 data, view vm1 data, view vm2 data.

Fig. 7 : Uploading files for training for VM1 and setting valid and invalid values for those files.

Similarly we upload the valid and invalid files of all VMs in training. We can view this under the ôView Trainô option

under the Training tab. Once they are all uploaded and viewed, we can begin the prediction process where we upload the

files under óPredictionô tab as shown.

Fig. 8: Uploading prediction files for testing.

Fig. 9: Prediction result for scenario -VM1 victim

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),

June- 2016, pp. 425-432

© 2016, IJARCSSE All Rights Reserved Page | 431

We have tested 3 scenarios after training: 1.When all VMs are safe 2. VM1 is victim 3. VM2 is victim. When the

ratios of valid/total outputs is calculated, in the case of attacker, one tends to get more of invalid result as itôs packets

transmission pattern looks similar to that of the victim, even though the attacker is a valid case. Hence a solution was

developed that for each row, probability calculation is done before it is determined as whether it is ôvalidô or ôinvalidô.

That is, some values may be 60% valid, others 90%. This also helps distinguish ôhow muchô a value is valid or invalid

for classifying more accurately and reduce the false-positives or false-negatives. Below graphs show results of 10 cases

each, for 3 possible scenarios. We are capturing 30 values for testing at a time using the esxtop command and retrieving

them through the GUI. In the case of a valid set, the valid output should be more than 50% (i.e. more than 15 values) to

get the prediction result of SVM as valid and vice-versa. So accuracy is good when this valid:total ratio is higher for

ósafeô cases and invalid:total ratio is higher in óattackô cases. To know efficiency, we have to test many cases and see

how many true-positives out of total cases.

A. Case 1(vm1 and vm2 are safe): In all the 10 cases in fig.10, more than 15 values were always valid, which resulted in

giving output as valid for all sets. Accuracy was also good as almost 28 or 29 vales out of 30 were valid in each case.

Accuracy for detecting a safe VM1 = 93.36% and for a safe VM2 = 86.34%. Efficiency = 10 / 10 = 100%.

Fig.10: Result Analysis when both VMs are safe.

B. Case 2(vm1 is under attack and vm2 is safe) : Here, in fig.11 we can see that, in 9 out of 10 cases, valid/total output is

less than 50% for VM1, indicating that VM1 is having more of invalid outputs, hence it can be determined as

exhibiting abnormal behaviour. Accuracy for detecting unsafe VM1 = 77.98% Efficiency = 9/10=90%.

Fig.11: Result Analysis for VM1 under attack.

C. Case 3(vm1 is safe and vm2 is under attack) : Similarly, in fig.12, here we have 8 out of 10 cases showing less than

50% for the valid / total output. In 2 cases (case 2 and 8), we have more than 50% having valid output so the SVM

algorithm has determined that both VMs are safe. This is a false positive which makes our efficiency less. Accuracy

for detecting unsafe VM2 = 75.03%. Efficiency= 8 / 10 = 80%.

Fig.12: Result Analysis for VM2 under attack.

Prem et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(6),

June- 2016, pp. 425-432

© 2016, IJARCSSE All Rights Reserved Page | 432

In order to increase the accuracy rate and efficiency percentage, we can train our model under different cases and include

as many outliers as possible.

VI. CONCLUSIONS

As we have seen, clear detection of safe and unsafe VMs can be done to a great extent with the help of support vector

machine(SVM) algorithm whose classification depends on the hyperplane created based on vectors lying on its margins.

Very few outliers and false-positive scenarios would be missed, thereby giving a good efficiency rate for detection.

Future scope would include trying to combine with existing security to further sturdy the safety of VM.

REFERENCES

[1] Thomas Ristenpart , Eran Tromer , Hovav Shacham , Stefan Savage, Hey, you, get off of my cloud: exploring

information leakage in third-party compute clouds, Proceedings of the 16th ACM conference on Computer and

communications security, November 09-13,2009.

[2] Y. Xia, Y. Liu, and H. Chen,òArchitecture Support for Guest-Transparent VM Protection from Untrusted

Hypervisor and Physical Attacks,ò IEEE 19th International Symposium on High Performance Computer

Architecture, pp. 246-257, Feb, 2013.

[3] Priyank Singh Hada, Ranjita Singh and Mukul Manmohan. Article: Security Agents: A Mobile Agent based

Trust Model for Cloud Computing. International Journal of Computer Applications, 36(12):12-15, December

2011.

[4] Hanqian Wu; Yi Ding; Winer, C.; Li Yao, òNetwork security for virtual machine in cloud computing,ò

Computer Sciences and Convergence Information Technology (ICCIT) , 2010 5th International Conference on,

vol., no., pp.18,21, Nov. 30 2010-Dec. 2 2010

[5] Garfinkel T, Rosenblum M (2005) When virtual is harder than real: Security challenges in virtual machine based

computing environments. In:Proceedings of the 10th conference on Hot Topics in Operating Systems, Santa Fe,

NM. volume 10. USENIX Association Berkeley, CA, USA, pp 227229.

[6] Xiongwei Xie; Weichao Wang, òRootkit detection on virtual machines through deep information extraction at

hypervisor- level,Communications and Network Security (CNS), 2013 IEEE Conference on, vol., no.,

pp.498,503, 14-16 Oct. 2013

[7] X. Jiang, X. Wang, and D. Xu, Stealthy malware detection through vmm-based out-of-the-box semantic view

reconstruction, in ACM CCS, 2007, pp. 128138

[8] C. Kruegel, W. Robertson, and G. Vigna, Detecting kernel-level rootkits through binary analysis, in Annual

Computer Security Applications Conference, 2004

[9] King, S.T.; Chen, P.M., òSubVirt: implementing malware with virtual machines,ò Security and Privacy, 2006

IEEE Symposium on , vol., no., pp.14 pp.,327, 21-24 May 2006.

[10] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection Based Architecture for Intrusion Detection.

Proc. of the 2003 Network and Distributed System Security Symposium, Feb. 2003.

[11] VMware Knowledge Base - http://kb.vmware.com/

[12] Gorka Irazoqui Apecechea and Mehmet Sinan Inci and Thomas Eisenbarth and Berk Sunar, òFine grain Cross-

VM Attacks on Xen and VMware are possible!,ò Cryptology ePrint Archive, Report 2014/248, 2014.

[13] NIST Cloud Computing Standards Roadmap NIST Special Publication 500-292, NIST Cloud Computing

Reference Architecture, September 2011.

[14] Ibrahim, A.S.; Hamlyn-Harris, J.; Grundy, John; Almorsy, M., òCloud- Sec: A security monitoring appliance for

Virtual Machines in the IaaS cloud model,òNetwork and System Security (NSS), 2011 5th International

Conference on, vol., no., pp.113,120, 6-8 Sept. 2011.

[15] Solaimani, M.; Iftekhar, M.; Khan, L.; Thuraisingham, B., òStatistical technique for online anomaly detection

using Spark over heterogeneous data from multi-source VMware performance data,ò Big Data (Big Data), 2014

IEEE International Conference on, vol., no., pp.1086,1094, 27-30 Oct 2014.

