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Abstract— In this paper, a systolic mess architecture for the implementation of three-dimensional discrete cosine 

transform (3-D DCT) is presented. The computation of the 3-D DCT is carried out using the row-column-frame 

(RCF) approach, where 2-D DCT is computed first followed by the final 1-D DCT. Two systolic architectures, one 

using complex arithmetic and the other using real arithmetic are proposed for the computation of 2-D DCT. It is 

interesting to note that the proposed architectures do not require any hardware / time for transposition of the 

intermediate results. The proposed architecture for 3-D DCT provides high throughput of computation due to fully 

pipelined processing and massive parallelism employed. The proposed architecture may be used for computation of 

either the forward or inverse 3-D DCT. The number of multiplications can be reduced by exploiting the symmetries of 

the cosine function. The architectures are relatively easy to implement and highly suitable for VLSI implementation. 
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I. INTRODUCTION 

DISCRETE COSINE transform (DCT) [1] has emerged as the most popular  substitute of  the Karhunen-Loeve 

transform (KLT) in several speech and image signal processing applications [2]. Many fast algorithms and architectures 

have been proposed for implementation of 1-D and 2-D DCT [3, 4]. There has been rapid growth in the 3-D applications 

based on the 3-D DCT. So fast algorithms and efficient architectures for implementation of 3-D DCT have been 

developed [5, 6]. 

A new 3-D vector-radix decimation-in-frequency (VR DIF) algorithm for implementation of the 3-D DCT-II has been 

developed in [5]. It has a regular butterfly structure. Its hardware implementation is difficult.  

3-D DCT is usually computed either using the row-column-frame (RCF) approach [7, 8] or through  mapping  it to 1-D 

and using other transforms. The RCF approach for the computation of 3-D DCT requires three stages of 1-D DCT 

computation and two stages to perform matrix and volume transpositions. Most of the 3-D DCT architectures proposed 

follow one of the two methodologies reported in [7] and [8]. The architecture of [7] uses three 1-D DCTs which accept 

the input data in a serial fashion. The outputs of 2-D DCT are fed into an N 
2
× N memory, which is shuffled to allow the 

correct reading for the final N-Point 1-D DCT.  

The transpose operation of the N 
2
× N memory required prior to the third 1-D DCT cannot be performed in the 

conventional manner i.e., row-column transpose.   This is due to the fact that this matrix is not square and that each 

element of the N-point data fed to the final 1-D DCT are collected every N 
2
cycles. In [7], this memory is divided into N 

distinct N × N memories and a switching network to enable a fast and simple read / write system. The throughput rate of 

the architecture is very less. The architecture of [8] uses N 2-D DCT modules, one for each of the N × N block and a final 

1-D DCT architecture. Although the architecture is fast, it requires two types of 1-D DCT architectures. The architecture 

of [9] uses two architectures proposed in [7] and [8]. It uses distributed arithmetic for computation of 1-D DCT. In [6] a 

fully parallel 3-D DCT / IDCT architecture without the RAM based matrix transposition is reported. The area-time 

complexity of the proposed architecture is less compared to existing architectures. 

In this paper, two pairs of different linear systolic arrays for computing N-point DCT have been used. The linear arrays of 

each pair are complementary to each other in a sense that the output of one linear array may be fed as the input for the 

other linear array. This feature of the linear arrays has been utilized for designing a systolic architecture for computing 3-

D DCT. It is interesting to note that the proposed structure for 3-D DCT does not require any hardware / time for the 

transposition of the intermediate results. The desired transposition is achieved by orthogonal alignment of the linear 

arrays. The proposed structure provides high throughput of computation due to fully pipelined processing, the massive 

parallelism employed in the architecture. 

The rest of the paper is organized as follows. The 3-D DCT algorithm and two recursive algorithms for computation of 1-

D DCT are presented in section II. The systolic architecture for implementation of 3-D DCT is discussed in section III. 

Hardware and throughput considerations of the architecture are presented in section IV. The conclusion is given in 

section V.  
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II. 3-D DCT ALGORITHM 

The 3-D DCT, X ( k1, k2, k3 ) of a 3-D spatial data sequence   {x(n1, n2, n3) , n1, n2 ,n3 = 0,1,2,. . . ,N-1} is defined as 

𝑋 𝑘1, 𝑘2, 𝑘3 =
8

𝑁3
𝜀𝑘1𝜀𝑘2𝜀𝑘3    𝑥 𝑛1, 𝑛2, 𝑛3 

𝑁−1

𝑛3=0

𝑁−1

𝑛2=0

𝑁−1

𝑛1 =0

cos[ 
𝜋

2𝑁
 2𝑛1 + 1 𝑘1] cos[ 

𝜋

2𝑁
(2𝑛2    + 1) 𝑘2] cos[ 

𝜋

2𝑁
(2𝑛3

+ 1) 𝑘3 ] 
for k1 = k2 = k3 = 0, 1, 2 , . . . , N-1.                                (1) 

where ɛ𝑘𝑖 =   
1

 2
 for 𝑘𝑖 = 0

1   otherwise.

  for i=1, 2 and 3.   

The forward and inverse transforms are merely mappings from the spatial domain to the transform domain and vice 

versa. The 3-D DCT is a separable transform and as such, the row-column – frame decomposition can be used to evaluate 

equation 1. The scale factor 
8

𝑁3 ɛ𝑘1ɛ𝑘2ɛ𝑘3is neglected.  

 The row transform can be expressed as 

𝑉 (𝑘1, 𝑛2, 𝑛3)  =  𝑥 𝑛1, 𝑛2 , 𝑛3 cos[ 
𝜋

2𝑁

𝑁−1

𝑛1=0

 2𝑛1 + 1 𝑘1]                                                                                                             2  

for k1, n2, and n3 = 0, 1,2, . . . . , N-1.              

 The column transform can be expressed as  

𝑊 (𝑘1, 𝑘2 , 𝑛3)  =  𝑉 𝑘1, 𝑛2 , 𝑛3 cos[ 
𝜋

2𝑁

𝑁−1

𝑛2=0

 2𝑛2 + 1 𝑘2 ]                                                                                                     (3) 

for k1, k2, and n3 = 0, 1, 2, . . . . , N-1. 

The frame transform can be expressed as     

𝑋 (𝑘1, 𝑘2 , 𝑘3)  =  𝑊 𝑘1, 𝑘2 , 𝑛3 cos[ 
𝜋

2𝑁

𝑁−1

𝑛3=0

 2𝑛3 + 1 𝑘3 ]                                                                                                       (4) 

for k1, k2, and k3 = 0, 1, 2, . . . . , N-1. 

In order to compute N × N × N– point DCT (where N is even), N row transforms, N column transforms, and N frame 

transforms are needed to be performed. 
 

A. Recursive algorithm for 1-D DCT using complex arithmetic 

T The DCT of a sequence {x (n), n = 0, 1, 2, . . . , N-1} may be given by  

𝑋  𝑘 =   𝑥 𝑛 cos[ 
𝜋  2𝑛 + 1 𝑘

2𝑁
]  

𝑁−1

𝑛=0

                                                                                                                                             (5) 

for k = 0, 1, 2, . . . . , N-1. 

Equation 5 may otherwise be expressed as 

𝑋 𝑘 = Re   𝑥 𝑛 𝑒
𝑗𝜋  2𝑛+1 𝑘

2𝑁

𝑁−1

𝑛=0

                                                                                                                                                          6  

Equation 6 may be simplified to yield 

𝑋 𝑘 = Re 𝛽𝑘  𝑋
′ 𝑘                                                                                                                                                                             (7) 

where 

𝑋′ 𝑘 =   𝑥 𝑛 𝑒
𝑗  𝜋𝑛𝑘

𝑁

𝑁−1

𝑛=0

                                                                                                                                                                     (8)     

 and  βk = 𝑒
𝑗  𝜋𝑘

2𝑁                                                                                                                                                                                           (9) 

Using Horner’s rule for polynomial estimation, equation 8 may be expressed by the recurrence relation 

𝑋′ (k)= (. . .+(x(N-1) αk+x(N-2) )αk+. . . + x (1) ) αk + x(0)        (10) 

where  αk  =   𝑒
𝑗  𝜋𝑘

𝑁                                                                      (11) 

𝑋′(k) for k = 0, 1, 2, . . ., N- 1, given by equation 10 can be calculated by (N-1) recursions in the processing elements  

(PEs), where each recursion consists of a complex addition followed by a complex multiplication. The desired DCT 

components may then be computed by multiplying each    𝑋′(k) with  𝛽𝑘   according to equation 7. 
 

B. Proposed linear systolic arrays for computing the 1-D DCT 

In this section two different linear systolic arrays for computing N– point DCT using recurrence relation (10) are 

proposed.  

The structure of linear array -I is shown in Fig.1a. It consists of N locally connected identical PEs. Function of the 

(k+1)th PE is described in Fig.1b . The (k+1)th PE computes 𝑋′(k) after (N-1) identical recursions in (N-1) successive 

time-steps and stores it in its accumulator. During the next time-step, the accumulator content of the (k+1)th PE is 

multiplied with 𝛽𝑘   to yield the DCT component X(k), and the accumulator content is then replaced by the first input 

element of the succeeding sequence, if any. 
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The structure of linear array-II is shown in Fig.2a.It consists of N locally connected identical PEs as in the case of linear 

array-I. The function of each PE is shown in Fig.2b. The first recursion for computing 𝑋′(k) according to equation (10) is 

implemented in the first PE. The successive (N-2) recursions are implemented in the succeeding (N-2) PEs. The last PE 

adds x(0) with the computed output from its proceeding PE and multiplies with 𝛽𝑘   to yield the kth DCT component. N 

numbers of output come out alternately through the terminals 1 and 2. 

 

C. Recursive  algorithm  for 1-D DCT using  real arithmetic 

The DCT given by equation (5) can be computed as  

𝑋 𝑘 = x (0) cos (
𝜋 𝑘

2𝑁
  ) + cos  

3 𝜋𝑘

 2𝑁
 𝑉1 − cos (

𝜋𝑘

2𝑁
)𝑉2         (12)                

where 

𝑉𝑚 = 𝑥 𝑚 + 2 cos  
𝜋 𝑘

𝑁
 𝑉𝑚+1  − 𝑉𝑚+2                        (13)  

for  m = 1, 2, . . .,N-1 

and  𝑉𝑚= 0 for m ≥ N.  

 

D. Proposed linear systolic arrays for computing the 1-D DCT 

The structure of linear array-III is shown in Fig.3a. It consists of N locally connected PEs of which the first (N-1) PEs are 

identical. The recurrence relation given by (13) is implemented in the first (N-1) PEs. The terminal cell computes the 

DCT components. Function of each of the first (N-1) PEs is shown in Fig.3b. Function of the last PE is shown in Fig.3c. 

Function of the terminal cell is shown in Fig.3d and Fig.3e.One point of the input data is fed to each PE in the reverse 

order i.e., ith element is fed to the (N+1-i)th PE. The first output is obtained after 2N+1 time-steps and the rest (N-1) 

output are obtained in subsequent (N-1) time-steps. However, successive sets of N-point DCT are obtained in every N 

time-steps. The terminal cell of linear array-III has one output port (Fig.3d) but the terminal cell of linear array-IV has 

two output ports (Fig.3e). N number of output comes out alternately through the ports 1 and 2 of the terminal cell of 

linear array-IV. 

 
Fig.1a: Linear array-I for computing N-point DCT 

 

 
Fig.1b: Function of the (k+1)th PE of linear array-1 

 

 
Fig.2a: Linear array-II for computing N-point DCT 

 

 
Fig.2b: Function of each PE of linear array-II. 
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Fig.3a: Linear array-III and –IV 

 

 
Fig.3d: Function of the terminal cell of the linear arrays of the first block 

 

 

C = cos( 
3𝜋𝑘1  

2𝑁    ) for terminal cell of each linear array  of the first block.C = cos( 
3𝜋𝑘2  

2𝑁    ) for terminal cell of each linear 

array  of the second block. 
Fig.3e: Function of the terminal cell of the linear arrays of the second block. 

 

III. SYSTOLIC ARCHITECTURE FOR IMPLEMENTATION OF 3-D DCT 

The proposed systolic architecture for  implementation of 3-D DCT is shown in Fig.4a. It consists of two stages. The first 

stage is for computation of 2-D DCT and the second stage is for computation of the last 1-D DCT. 

 

A. First stage (Using complex arithmetic) 

It consists of two layers of systolic arrays placed one over the other. The lower layer consists of N number of linear 

array-I and the upper layer consists of N number of linear array-II. Each linear array-I consists of N number of locally 

connected identical PEs (Fig.1b) while each linear array-II consists of N number of locally connected identical PEs 

(Fig.2b). The lower layer makes the first stage of computation to provide the intermediate result [V (k1, n2, n3)] to the 

upper layer. The upper layer makes the second stage of computation to yield the desired 2-D DCT components [W (k1, k2, 

n3)] which come out of the last PE in the sets of N outputs alternately through ports 1 and 2. The elements of nth column 

of the input matrix are fed to the (N-n)th linear array-I in reverse order, staggered by one time-step with respect to the 

input of (N-n-1)th linear array-I. The linear arrays of the upper layer are placed orthogonally with respect to the linear 

arrays of the lower layer, such that each PE of the upper layer is placed over a PE of the lower layer. Each PE of the 

layer, therefore, receives its desired input in proper sequence of time and processes the rows of intermediate results to 

yield the desired transform components. 

 

B. First  stage (Using real arithmetic) 
The proposed systolic architecture for implementation of 2-D DCT, shown in Fig.3f, consists of two blocks of identical 

linear arrays, shown in Fig.3a, for the two distinct stages of computation given in equations 3 and 2. The processing in 

the arrays of the two blocks is made to take place in mutually orthogonal directions. Both blocks consist of N number of 
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linear arrays. Each linear array consists of N number of locally connected PEs. At the end of each linear array there is a 

terminal cell shown in Fig.3d and Fig.3e. All the PEs of each linear array of both blocks are identical except the last PE. 

Function of each of the identical PEs of the linear arrays is shown in Fig.3b. The linear arrays of the first block make the 

first stage of computation to provide the intermediate result [V (k1, n2, n3)] to the linear arrays of the second block. The 

linear arrays of the second block make the second stage of computation to yield the desired 2-D DCT components. The 

elements of the ith column of the 2-D input data are fed to the (N+1-i)th PE of the first linear array of the first block. 

Each PE of the linear arrays of the second block receives its desired input in proper sequence of time. 

 

C. Second stage 

The second stage of the proposed systolic architecture for computation of last 1-D DCT consists of N-number of linear 

array-V. Each linear array-V consists of N number of locally connected identical PEs shown in Fig.4b. Each PE of linear 

array-V is functionally similar to that of linear array-I except that each PE of linear array –V has two input and two 

output terminals and two accumulators t1 and t2  corresponding to the two output terminals of the last PE of each  linear 

array-II and linear array-IV. Each output sequence of terminals 1 of last PE of linear array-II and linear array –IV is 

delayed by (N+1) time-steps. Alternate pairs of input data from terminals 1 and 2 of each PE of linear array –V are 

processed and routed to accumulators t1 and t2, respectively. The 3-D DCT components are obtained from the PEs of 

linear array-V. 

 

IV. HARDWARE AND THROUGHPUT CONSIDERATIONS 

Each of the linear arrays-I, - II and –V for computing N-point DCT require N number of identical PEs. In every 

computational cycle each PE of linear arrays-I and –II performs a complex addition followed by a complex 

multiplication and each PE of linear array-V performs two complex additions and two complex multiplications. The 

duration of each time-step is, therefore, the time required for computing a complex addition and a complex multiplication 

by the PEs. The actual duration of the time-step will, however, depend on the hardware used in the PEs for implementing 

the complex additions and multiplications. In the linear array-I, the first output is obtained after (N+1) time-steps and the 

rest (N-1) output are obtained in subsequent (N-1) time-steps. In linear array-II, the first output is obtained after N time-

steps and the rest (N-1) output are obtained in subsequent (N-1) time-steps. However, successive sets of N-point DCTs 

are obtained from both the linear arrays-I and-II in every N time-steps. However, 2N outputs are obtained from linear 

array-V in every N time-steps. The  first output of the lower layer is obtained after (N+1) time-steps. The first output of 

the upper layer is obtained after (2N+1) time-steps. The first set of 2-D DCT component is obtained in (4N-1) time-steps. 

However, successive sets of 2D-DCTs may be obtained in every N time-steps. The throughput rate of the proposed 2-D 

DCT structure would, therefore, be R = (N / T) where T is the duration of a time-step, given by T =Tm +Ta. Tm and Ta are, 

respectively, the time required for performing a complex multiplication and a complex addition in the PEs. The first two 

3-D DCT components are obtained from the first PE of linear array-V after (4N +3) time-steps. The complete set of 3-D 

DCT components is obtained in 7N time-steps. However, successive sets of 3-D DCT may be obtained in every N time-

steps. The throughput rate of the proposed 3-D DCT structure is R = (N / T ). Numbers of multipliers and adders required 

by the proposed architecture are equal to 4(4N +1) and 16(N +1), respectively. The area complexity (A), computation 

time (τ) and VLSI performance measure (Aτ 
2
) are 2N 

2
, 3N and 18N 

4
, respectively. 

The proposed systolic architecture for implementation of 2-D DCT (Fig.3f) consists of two blocks of identical linear 

arrays for two distinct stages of computation. The processing in the arrays of two blocks takes place in mutually 

orthogonal directions. Both the blocks consist of N number of linear arrays. Each linear array of both blocks consists of N 

number of locally connected PEs. All the PEs of each linear array of both blocks are identical except the last PE. Each PE 

and each terminal cell of the linear arrays require one accumulator storage. Each of the identical PEs consists of one 

multiplier and one adder for performing one multiplication and two additions in every computational cycle. The last PE 

and the terminal cells of the arrays require one multiplier and one adder to perform one multiplication and one addition in 

every computational cycle. Apart from this, each PE of the linear arrays requires two latches for data transfer. The first 

output of the first layer of the first block is obtained after (N +1) time-steps. The first output of the first layer of the 

second block is obtained after 2(N +1) time-steps. All the N sets of N–point DCTs are obtained in 4N time-steps. 

However, successive sets of DCTs may be obtained in every N time-steps. The throughput rate of the proposed 2-D 

architecture would, therefore, be R = (N / T ) where T is the duration of a time-step, given byT=Tm +Ta. 

 

Table I comparison of hardware requirements of the proposed architectures with the architecture of [5]. 

Features 
ARCHITECTUR

E OF [5] 

Proposed   

architecture 

using complex 

arithmetic 

Proposed   

architecture  

using real 

arithmetic 

Number  of 

Multipliers 

7

8
log2 𝑁 4N 

2
(3N+1) 3N ( N+1) 

Number  of 

Adders 

9

2
𝑁3 log2 𝑁

− 3𝑁3 + 3𝑁2 

16(N+1) 2N (5N+4) 
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Fig 4a: Systolic architecture for implementation of 3-D DCT 

 

 

 
 

V. CONCLUSION 

I In this paper, a systolic architecture for computation of 3-D DCT and two systolic architectures for computation of 2-D 

DCT are proposed. These architectures do not require any  extra hardware / time for the transposition of the intermediate 

output. The proposed architecture provides high throughput of computation due to fully pipelined processing and massive 

parallelism employed. The architectures are relatively easy to  implement and highly suitable for VLSI implementation. 

The proposed architectures have been implemented using C programming using P-4 processor with speed of 1000 M Hz 

and 256 MB RAM.    
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