
© 2016, IJARCSSE All Rights Reserved Page | 288

 Volume 6, Issue 1, January 2016 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Data Mining Models – Needs & Comparison
1
Dr. Shishu Pal Singh

*
,

2
Manoj Kumar

1
Assistant Professor and Head, Computer Science Department, V.S.P. Govt. PG College, Shamli, Uttar Pradesh, India

2
Assistant Professor, Computer Science and Engineering, Department, I.A.M.R. Ghaziabad, U.P., India

Abstract: As data mining is about extracting hidden information from the database which could not be provided by a

report. Many data mining models and visualization techniques are used for this purpose. This paper emphasizes on

various models used for data mining and discusses the importance of the visualization techniques.

Keywords: CART, CHAID, OLAP

I. INTRODUCTION

The point of data visualization is to let the user understand what is going on. Since data mining usually involves

extracting "hidden" information from a database, this understanding process can get somewhat complicated. In most

standard database operations nearly everything the user sees is something that they knew existed in the database already.

A report showing the breakdown of sales by product and region is straightforward for the user to understand because they

intuitively know that this kind of information already exists in the database. If the company sells different products in

different regions of the county, there is no problem translating a display of this information into a relevant understanding

of the business process.

Data mining, on the other hand, extracts information from a database that the user did not already know about.

Useful relationships between variables that are non-intuitive are the jewels that data mining hopes to locate. Since the

user does not know beforehand what the data mining process has discovered, it is a much bigger leap to take the output

of the system and translate it into an actionable solution to a business problem. Since there are usually many ways to

graphically represent a model, the visualizations that are used should be chosen to maximize the value to the viewer. This

requires that we understand the viewer's needs and design the visualization with that end-user in mind. If we assume that

the viewer is an expert in the subject area but not data modeling, we must translate the model into a more natural

representation for them. For this purpose we suggest the use of orienteering principles as a template for our

visualizations.

1.1 Orienteering

Orienteering is typically accomplished by two chief approaches: maps and landmarks. Imagine yourself set

down in an unknown city with instructions to find a given hotel. The usual method is to obtain a map showing the large-

scale areas of the city. Once the "hotel district" is located we will then walk along looking for landmarks such as street

names until we arrive at our location. If the landmarks do not match the map, we will re-consult the map and even

replace one map with another. If the landmarks do not appear correct then usually one will backtrack, try a short side

journey, or ask for further landmarks from people on the street. The degree to which we will follow the landmark chain

or trust the map depends upon the match between the landmarks and the map. It will be reinforced by unexpected

matches (happening along a unique landmark for which we were not looking), by finding the landmark by two different

routes and by noting that variations are small. Additionally, our experience with cities and maps and the urgency of our

journey will affect our confidence as well.

The combination of a global coordinate system (the map analogy) and the local coordinate system (the landmarks)

must fit together and must instill confidence as the journey is traversed. The concept of a manifold is relevant in that the

global coordinates must be realizable, as a combination of local coordinate systems is some sense. To grow trust in the

user we should:

1. Show that nearby paths (small distances in the model) do not lead to widely different ends

2. Show, on demand, the effect that different perspectives (change of variables or inclusion probabilities) have on

model structure

3. Make dynamic changes in coloring, shading, edge definition and viewpoint (dynamic dithering)

4. Sprinkle known relationships (landmarks) throughout the model landscape.

5. Allow interaction that provides more detail and answers queries on demand.

The advantages of this manifold approach include the ability to explore it in some optimal way (such as projection

pursuit), the ability to reduce the models to a independent coordinate set, and the ability to measure model adequacy in a

more natural manner.

http://www.ijarcsse.com/

Singh et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 288-295

© 2016, IJARCSSE All Rights Reserved Page | 289

1.2 Why a Data Mining Model is needed?

The driving forces behind the need of data mining models can be broken down into two key areas:

Understanding and Trust. Understanding is undoubtedly the most fundamental motivation behind visualizing the model.

Although the simplest way to deal with a data mining model is to leave the output in the form of a black box, the user

will not necessarily gain an understanding of the underlying behavior in which they are interested. If they take the black

box model and score a database, they can get a list of customers to target (send them a catalog, increase their credit limit,

etc.). There’s not much for the user to do other than sit back and watch the envelopes go out. This can be a very effective

approach. Mailing costs can often be reduced by an order of magnitude without significantly reducing the response rate.

The more interesting way to use a data mining model is to get the user to actually understand what is going on

so that they can take action directly. Visualizing a model should allow a user to discuss and explain the logic behind the

model with colleagues, customers, and other users. Getting buy-in on the logic or rationale is part of building the users’

trust in the results. For example, if the user is responsible for ordering a print advertising campaign, understanding

customer demographics is critical. Decisions about where to put advertising dollars are a direct result of understanding

data mining models of customer behavior. There’s no automated way to do this. It’s all in the marketing manager’s head.

Unless the output of the data mining system can be understood qualitatively, it won’t be of any use. In addition, the

model needs to be understood so that the actions that are taken as a result can be justified to others.

Understanding means more than just comprehension; it also involves context. If the user can understand what

has been discovered in the context of their business issues, they will trust it and put it into use. There are two parts to this

problem: 1) visualization of the data mining output in a meaningful way, and 2) allowing the user to interact with the

visualization so that simple questions can be answered. Creative solutions to the first part have recently been

incorporated into a number of commercial data mining products (such as MineSet [1]). Graphing lift, response, and

(probably most importantly) financial indicators (e.g., profit, cost, ROI) give the user a sense of context that can quickly

ground the results in reality. After that, simple representations of the data mining results allow the user to see the data

mining results. Graphically displaying a decision tree (CART, CHAID, and C4.5) can significantly change that way in

which the data mining software is used. Some algorithms can pose more problems than others (e.g., neural networks) can

but novel solutions are starting to appear.

It is the second part that has yet to be addressed fully. Interaction is, for many users, the Holy Grail of

visualization in data mining. Manipulation of the data and viewing the results dynamically allows the user to get a feel

for the dynamics and test whether something really counter-intuitive is going on. The interactivity helps achieve this and

the easier this is to do the better. Seeing a decision tree is nice, but what they really want to do is drag-and-drop the best

segments onto a map of the United States in order to see if there are sales regions that are neglected. The number of

"what if" questions that can be asked is endless: How do the most likely customers break down by gender? What is the

average balance for the predicted defaulters? What are the characteristics of mail order responders? The interaction will

continue until the user understands what is going on with their customers. Users also often desire drill through so that

they can see the actual data behind a model (or some piece of the model), although it is probably more a matter of

perceptions rather than actual usefulness. Finally, integrating with other decision support tools (e.g., OLAP) will let users

view the data mining results in a manner that they are already using for the purpose of understanding customer behavior.

By incorporating interaction into the process, a user will be able to connect the data mining results with his or her

customers.

II. TRUSTING THE MODEL

Attributing the appropriate amount of trust to data mining models is essential to using them wisely. Good

quantitative measures of "trust" must ultimately reflect the probability that the model’s predictions would match future

test targets. However, due to the exploratory and large-scale nature of most data-mining tasks, fully articulating all of the

probabilistic factors to do so would seem to be generally intractable. Thus, instead of focusing on trying to boil "trust"

down to one probabilistic quantity, it is typically most useful to visualize along many dimensions some of the key factors

that contribute to trust (and distrust) in ones models. Furthermore, since, as with any scientific model, one ultimately can

only disprove a model, visualizing the limitations of the model is of prime importance. Indeed, one might best view the

overall goal of "visualizing trust" as that of understanding the limitations of the model, as opposed to understanding the

model itself.

Since data mining relies heavily on training data, it is important to understand the limitations that given data sets

put on future application of the resulting model. One class of standard visualization tools involves probability density

estimation and clustering over the training data. Especially interesting would be regions of state space that are uncommon

in the training data yet do not violate known domain constraints. One would tend to trust a model less if it acts more

confident when presented with uncommon data as future inputs. For time-series data, visualizing indicators of non-

stationarity is also important.

2.1 Assessing Trust in a Model

Assessing model trustworthiness is typically much more straight-forward than the holy grail of model

understanding per se — essentially because the former is largely deconstructive while the latter is constructive. For

example, without a deep understanding of a given model, one can still use general domain knowledge to detect that it

violates expected qualitative principles. A well-known example is that one would be concerned if ones model employed a

(presumably spurious) statistic correlation between shoe size and IQ. Of course, there are still very significant challenges

in declaring such knowledge as completely and consistently as possible.

Singh et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 288-295

© 2016, IJARCSSE All Rights Reserved Page | 290

Domain knowledge is also critical for outlier detection needed to clean data and avoid classic problems such as

a juvenile crime committed by a 80-year-old "child". If a data mining model were build using the data in Figure 1, it is

possible that outliers (most likely caused by incorrect data entry) will skew the resulting model (especially the zero-year-

old children, which are more reasonable than eighty-year-old children). The common role of visualization here is mostly

in terms of annotating model structures with domain knowledge that they violate.

Figure 1: Age (in months) vs. Days to Intake Decision for juvenile crime offenders, Maryland Department of Juvenile

Services. Note the 80-year-old children on the right side of the graph.

Not all assessments of trust are negative in nature, however. In particular, one can also increase ones trust in a

model if other reasonable models seem worse. In this sense, assessing trust is also closely related to model comparison.

In particular, it is very useful to understand the sensitivity of model predictions and quality to changes in parameters

and/or structure of the given model. There are many ways to visualize such sensitivity, often in terms of local and global

(conditional) probability densities — with special interest in determining whether multiple modes of high probability

exist for some parameters and combinations. Such relative measures of trust can be considerably less demanding to

formulate than attempts at more absolute measures, but do place special demands on the visualization engine, which must

support quick and non-disorientating navigation through neighboring regions in model space.

Statistical summaries of all sorts are also common and useful for gathering insights for assessing model trust.

Pairwise scatter-plots and low-dimensional density estimates are especially common. Summaries can be particularly

useful for comparing relative trust of two models, by allowing analysis to focus on subsets of features for which their

interrelationships differ most significantly between two models.

It is often useful to combine summaries with interactive ability to drill-through to the actual data. Many forms of

visual summary actually display multiple scales of data along the raw to abstract continuum, making visual drill-through

a natural recursive operation. For example, compressing millions of samples into a time-series strip chart that is only

1000 pixels wide allows one to quickly see the global highest and lowest points across the entire time range, as well as

the local high and low points occurring within each horizontal pixel.

Most useful are models that qualify their own trustworthiness to some degree, such as in quantifying the

expected variance in the error of their predictions.

In practice, such models tend to be relatively rare. Heavy emphasis on expected case rather than worst case

performance is generally not all that inappropriate, since one is typically ultimately interested in concepts such as

expected cumulative payoff.

There are important classes of tasks, such as novelty detection (e.g. fraud detection), for which quantified

variance is essential. Standard techniques are learning confidence intervals (e.g. error bars for neural networks) and

general probability density estimation. A promising recent approach [2], called bounds estimation, attempts to find a

balance between the complexity of general probability density estimation and the simplicity of the mean estimation plus

variance estimation approach to error bars.

Finally, it is important, though rather rare in practice to date, to consider many transformations of the data

during visual exploration of model sensitivities. For example, a model that robustly predicts well the internal pressure of

some engineering device should probably also be able to do well predicting related quantities, such as its derivative, its

power spectrum, and other relevant quantities (such as nearby or redundant pressures). Checking for such internal

consistency is perhaps ultimately one of the most important ways to judge the trustworthiness of a model, beyond

standard cross validation error. Automated and interactive means of exploring and visualizing the space (and degrees) of

inconsistencies a model entails seems to be a particularly important direction for future research on assessing model

trustworthiness.

Singh et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 288-295

© 2016, IJARCSSE All Rights Reserved Page | 291

III. UNDERSTANDING THE MODEL
A model that can be understood is a model that can be trusted. While statistical methods build some trust in a

model by assessing its accuracy, they cannot assess the model’s semantic validity — its applicability to the real world.

A data mining algorithm that uses a human-understandable model can be checked easily by domain experts,

providing much needed semantic validity to the model. Unfortunately, users are often forced to trade off accuracy of a

model for understandability.

Advanced visualization techniques can greatly expand the range of models that can be understood by domain

experts, thereby easing the accuracy/understandability trade-off. Three components are essential for understanding a

model: representation, interaction, and integration. Representation refers to the visual form in which the model appears.

A good representation displays the model in terms of visual components that are already familiar to the user. Interaction

refers to the ability to see the model in action in real time, to let the user play with the model as if it were a machine.

Integration refers to the ability to display relationships between the model and alternate views of the data on which it is

based. Integration provides the user context.

The rest of this section will focus on understanding classification models. Specifically, we will examine three

models built using Silicon Graphic’s MineSet: decision tree, simple Bayesian, and decision table classifiers [3]. Each of

these tools provides a unique form of understanding based on representation, interaction, and integration.

The graphical representation should be simple enough to be easily understood, but complete enough to reveal all

the information present in the model. This is a difficult balance since simplicity usually trades off against completeness.

Three-dimensional visualizations have the potential to show far more information than two-dimensional visualizations

while retaining their simplicity. Navigation in such a scene lets one focus on an element of interest while keeping the rest

of the structure in context. It is critical, however, that the user be able to navigate through a three-dimensional

visualization in real time. An image of a three-dimensional scene is merely a two-dimensional projection and is usually

more difficult to understand than a scene built in two dimensions.

Even with three dimensions, many models still contain far too much information to display simply. In these cases the

visualization must simplify the representation as it is displayed. The MineSet decision tree and decision table visualizers

use the principle of hierarchical simplification to present a large amount of information to the user.

Decision trees are easy to understand but can become overwhelmingly large when automatically induced. The

SGI MineSet Tree Visualizer uses a detail-hiding approach to simplify the visualization. In figure 2, only the first few

levels of the tree are initially displayed, despite the fact that the tree is extensive. The user can gain a basic understanding

of the tree by following the branches of these levels. Additional levels of detail are revealed only when the user navigates

to a deeper level, providing more information only as needed.

Figure 2: The MineSet Tree Visualizer shows only the portion of the model close to the viewer.

Using decision tables as a model representation generates a simple but large model. A full decision table

theoretically contains the entire dataset, which may be very large. Therefore simplification is essential. The MineSet

decision table arranges the model into levels based on the importance of each feature in the table. The data is

automatically aggregated to provide a summary using only the most important features. When the user desires more

information, he can drill down as many levels as needed to answer his question. The visualization automatically changes

the aggregation of the data to display the desired level of detail. In figure 3, a decision table shows the well-known

correlation between head shape and body shape in the monk dataset. It also shows that the classification is ambiguous in

cases where head shape does not equal body shape. For these cases, the user can drill down to see that the attribute jacket

color determines the class.

Singh et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 288-295

© 2016, IJARCSSE All Rights Reserved Page | 292

 While a good representation can greatly aid the user’s understanding, in many cases the model contains too

much information to provide a representation that is both complete and understandable. In these cases we exploit the

brain’s ability to reason about cause and effect and let the user interact with the more complex model. Interaction can be

thought of as "understanding by doing" as opposed to "understanding by seeing".

Common forms of interaction are interactive classification, interactive model building, drill-up, drill-down,

animation, searching, filtering, and level-of-detail manipulation. The fundamental techniques of searching, filtering, drill-

up, and drill-down, make the task of finding information hidden within a complex model easier. However, they do not

help overall understanding much. More extensive techniques (interactive classification, interactive model building) are

required to help the user understand a model which is too complicated to show with a static image or table. These

advanced methods aid understanding by visually showing the answer to a user query while maintaining a simplified

representation of the model for context.

Figure 3: The MineSet Decision Table Visualizer shows additional pairs of attributes as the user drills down into the

model.

The MineSet Evidence Visualizer allows the user to interact with a simple Bayesian classifier (Figure 4). Even

simple Bayesian models are based on multiplying arrays of probabilities that are difficult to understand by themselves.

However, by allowing the user to select values for features and see the effects, the visualization provides cause-and-effect

insight into the operation of the classifier. The user can play with the model to understand exactly how much each feature

affects the classification and ultimately decide to accept or reject the result. In the example in the figure, the user selects

the value of "working class" to be "self-employed-incorporated," and the value of "education" to be "professional-

school". The pie chart on the right displays the expected distribution of incomes for people with these characteristics.

Figure 4: Specific attribute values are selected in the Evidence Visualizer in order to predict income for people with those

characteristics.

Singh et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 288-295

© 2016, IJARCSSE All Rights Reserved Page | 293

Beyond interactive classification, interactively guiding the model-building process provides additional control

and understanding to the user. Angoss [4] provides a decision tree tool that gives the user full control over when and how

the tree is built. The user may suggest splits, perform pruning, or manually construct sections of the tree. This facility can

boost understanding greatly. Figure 5a shows a decision tree split on a car’s brand attribute. While the default behavior of

the tree is to form a separate branch on the tree for each categorical value, a better approach is often to group similar

values together and produces only a few branches. The result shown in figure 5b is easier to understand and can

sometimes give better accuracy. Interactive models allow the user to make changes like this as the situation warrants.

Figures 5a and 5b: A decision tree having branches for every value of the brand attribute (top), and a decision tree which

groups values of brand to produce a simpler structure (bottom).

Interactive techniques and simplified representations can produce models that can be understood within their

own context. However, for a user to truly understand a model, he must understand how the model relates to the data from

which it was derived. For this goal, tool integration is essential.

Few tools on the market today use integration techniques. The techniques that are used come in three forms:

drill-through, brushing, and coordinated visualizations. Drill-through refers to the ability to select a piece of a model and

gain access to the original data upon which that piece of the model was derived. For example, the decision tree visualizer

allows selection and drill-through on individual branches of the tree. This will provide access to the original data that was

used to construct those branches, leaving out the data represented by other parts of the tree. Brushing refers to the ability

to select pieces of a model and have the selections appear in an alternate representation. Coordinated visualizations

generalize both techniques by showing multiple representations of the same model, combined with representations of the

original data. Interactive actions that affect the model also affect the other visualizations. All three of these techniques

help the user understand how the model relates to the original data. This provides an external context for the model and

helps establish semantic validity.

As data mining becomes more extensive in industry and as the number of automated techniques employed

increases, there is a natural tendency for models to become increasingly complex. In order to prevent these models from

becoming mysterious oracles, whose dictates must be accepted on faith, it is essential to develop more sophisticated

visualization techniques to keep pace with the increasing model complexity. Otherwise there is a danger that we will

make decisions without understanding the reasoning behind them.

Singh et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 288-295

© 2016, IJARCSSE All Rights Reserved Page | 294

IV. COMPARING DIFFERENT MODELS USING VISUALIZATION

Model comparison requires the creation of an appropriate metric for the space of models under consideration.

To visualize the model comparison, these metrics must be interpretable by a human observer through his or her visual

system. The first step is to create a mapping from input to output of the modeling process. The second step is to map this

process to the human visual space.

4.1 Different Meanings of the Word "Model"

It is important to recognize that the word "model" can have several levels of meaning. Common usage often

associates the word model with the data modeling process. For example, we might talk of applying a neural network

model to a particular problem. In this case, the word model refers to the generic type of model known as a neural

network. Another use of the word model is associated with the end result of the modeling process. In the neural network

example, the model could be the specific set of weights, topology, and node types that produces an output given a set of

inputs. In still another use, the word model refers to the input-output mapping associated with a "black-box." Such a

mapping necessarily places emphasis on careful identification of the input and output spaces.

4.2 Comparing Models as Input-Output Mappings

The input-output approach to model comparison simply considers the mapping from a defined input space to a

defined output space. For example, we might consider a specific 1-gigabyte database with twenty-five variables

(columns). The input space is simply the Cartesian product of the database's twenty-five variables. Any actions inside the

model, such as creation of new variables, are hidden in the "black-box" and are not interpreted. At the end of the

modeling process, an output is generated. This output could be a number, a prioritized list or even a set of rules about the

system. The crucial issue is that we can define the output space in some consistent manner to derive an input to output

mapping.

It is the space generated by the mappings that is of primary importance to the model comparison. For most

applications the mapping space will be well defined once the input and output spaces are well defined. For example, two

classifiers could be described by a set of input/output pairs, such as (obs1, class a), (obs2, class b), etc. The comparison

metric could then be defined on these pairs as a count of the number differing, or GINI indices, or classification cost, etc.

The resulting set of pairs could be visualized by simple plotting of points on a two-dimensional graph. The two model

could be indexed by coloring or symbol codes. Or one could focus on the difference between each model directly and

plot this. This approach should prove adequate so long as we restrict attention to a well-defined input-output structure.

4.3 Comparing Models as Algorithms
In the view of a model as static algorithm, again there seems to be a reasonable way to approach the model

comparison problem. For example, a neural network model and an adaptive nonlinear regression model might be

compared. These models would be expressed as a series of algorithmic steps. Each model's algorithm could then be

analyzed by standard methods for measurement of algorithmic performance such as complexity, the finite word length

and the stability of the algorithm. The investigator could also include measures on the physical implementation of the

algorithm such as computation time, or computation size. Using these metrics the visualization could take the form of bar

charts across the metrics. Again, different models could be encoded by color or symbol, and a graph of only difference

between the two models on each metric could be provided. Each comparison would be for a static snapshot but certainly

dynamic behavior could be exploited through a series of snapshots, i.e. a motion picture.

4.4 Comparing Models as Processes
The view of the model as a process is the most ill defined and therefore most intractable of the three views, but

this should not minimize its importance. Indeed its sheer complexity might make it the most important view for the

application of visualization. It is precisely in this arena that we encounter the subject area expert for whom these systems

should offer the most benefit (such as confidence and trust).

The modeling process includes everything in and around the modeling activity, such as the methods, the users,

the database, the support resources, and constraints such as knowledge, time and analysis implementation. Clearly this

scope is too large for us to consider. Let us narrow our scope by assuming that the model comparison is being applied for

one user on one database over a short time period. This implies that user differences, database differences, and

knowledge difference can be neglected. We are left with analysis methods and implementation issues. For most subject

area experts the implementation and the analysis are not separable, and so we will make the additional assumption that

this issue can be ignored as well. With these simplifying assumptions we are essentially defining model comparison to be

the comparison of modeling method and implementation simultaneously.

Imagine two models that are available in some concrete implemented form. These could be different general methods

such as neural networks versus tree-based classifiers, or they could be different levels of sophistication within a class of

models such as CART versus CHAID tree-structures. Remember that we are now focusing only on the modeling process,

and not its input/output or algorithmic structure. It seems that reasonable metrics can be defined in this situation. For

example, the running time could be such a metric, or the interpretability of instructions, or the number of tuning

parameters that must be chosen by the user at run-time. The key here is that these metrics must be tailored to the user

who is the target of the application. Thus, whereas the input-output view focused on these the spaces, and the algorithmic

view focused on the properties of the algorithm independently of the user, now we must focus in great detail on the user’s

needs and perceptions.

Singh et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 288-295

© 2016, IJARCSSE All Rights Reserved Page | 295

Once a set of metrics are chosen, we appear to be in a similar situation to that described under the algorithmic

comparison. We should be able to show the distances between models in each of the defined metrics in a bar chart or

other standard display. Color or symbol coding can be used to show the results from each model on the same chart as

well.

There will be many possible metrics for the model-building process, at least one per user. Since it is unlikely we

can choose a set of "one-size-fits-all" metrics, it is more useful to establish properties of good metrics and create methods

to establish them in novel situations. The metrics chosen by a academic researcher would likely be very different from

those chosen business user. Some properties that good metrics for the modeling process should be:

1. That they are expressed in direct risk/benefit to user.

2. That they evaluate their sensitivity to model input and assumptions.

3. That they can be audited (open to questioning at any point).

4. That they are dynamic.

5. That they can be summarized in the sense of an overall map.

6. That they allow reference to landmarks and markers.

Some aspects of the visualization process will take on added importance. One such aspect is the sequential

behavior of the modeling process. For example, it is common to plot frequently the updated fit between the data and the

model predictions as a neural network learns. A human being will probably give more trust to a method which mimics

his or her own learning behavior (i.e., a learning curve which starts with a few isolated details, then grows quickly to

broad generalizations and then makes only incremental gains after that in the typical "S" shape). Unstable behavior or

large swings should count against the modeling process.

Another aspect of importance should a visual track of the sensitivity of the modeling process to small changes in

the data and modeling process parameters. For example, one might make several random starts with different random

weights in a neural network model. These should be plotted versus one another showing their convergence patterns,

again perhaps against a theoretical S-shaped convergence.

The model must also be auditable, meaning that inquiries may be made at any reasonable place in the modeling

process. For a neural network we should be able to interrupt it and examine individual weights at any step in the

modeling process. Likewise for a tree-based model we should be able to see subtrees at will. Ideally there could be

several scales in which this interruption could occur.

Since most humans operate on a system of local and global coordinates it will be important to be able to

supplement the visualizations with markers and a general map structure. For example, even though the direct comparison

is between two neural nets with different structures, it would be good to have the same distances plotted for another

method with which the user is familiar (like discriminant analysis) even if that method is inadequate. If the same model

could be used on a known input, the user could establish trust with the new results. It might also be useful to have

simultaneously a detailed and a summarized model displayed. For example, the full tree-based classifier might have

twenty-five branches, but the summarized tree might show the broad limbs only. And if the output is a rule it might be

useful to drive (through logical manipulation) other results or statements of results as a test of reasonableness.

V. CONCLUSION
In this number of methods to identify the need of data mining models have been discussed. Because data mining

models typically generate results that were previously unknown to the user, it is important that any model provide the

user with sufficient levels of understanding and trust.

REFERENCES

[1] C. Brunk, J. Kelly, and R. Kohavi, "MineSet: An Integrated System for Data Access, Visual Data Mining, and

Analytical Data Mining," Proceedings of the Third Conference on Knowledge Discovery and Data Mining

(KDD-97), Newport Beach, CA, August 1997.

[2] D. DeCoste, "Mining multivariate time-series sensor data to discover behavior envelopes," Proceedings of the

Third Conference on Knowledge Discovery and Data Mining (KDD-97), Newport Beach, CA, August 1997.

[3] D. Rathjens, MineSet Users Guide, Silicon Graphics, Inc., 1997.

[4] See http://www.angoss.com.

