

Anbunathan R<sup>\*</sup> Test Manager and Research Scholar Bharathiar University, Tamilnadu, India

Anirban Basu Professor, Department of CSE APS College of Engineering, Bangalore, India

Abstract— Due to increasing use of OOAD techniques, UML-based testing has been gaining attention for Functional Testing. In this paper, a novel method to generate test cases from UML State diagrams is presented. Use case State chart diagram is parsed to extract information about States and Transitions. Using this information, LCSAJ test cases and MC/DC test cases are generated automatically. The application of the method is illustrated with a case study. The advantages of the proposed method are also discussed.

Keywords— UML diagram, UML testing; Test case generation; State chart diagram; Model Based Testing; Test automation.

# I. INTRODUCTION

Today UML is being widely used for designing systems and UML State chart diagram is playing a major role in modelling the dynamic behaviour of an application or of an embedded system. Product development environment is tightly coupled with UML tools for designing system behaviour. Test Engineers need to create test cases from State chart diagrams to test the behaviour of the system, by inputting different combinations of test data.

Many methods have been proposed for generating test cases from UML State chart diagram. The method proposed in this paper discusses test case generation from State chart diagram and generates Multiple Conditions/Decision coverage (MC/DC) test cases and LCSAJ based test cases. The method is more effective than others with effectiveness measured in terms of state coverage, transition coverage, and path coverage. The test cases generated by this method help to achieve 100% test coverage without spending much effort.

# II. RELATED WORK

This section discusses other methods that have been proposed for UML State chart based testing. In [4], Samuel et al. proposed a method to generate test cases from UML State diagram. This approach can handle events, guards and transitions. Test data also generated automatically using function minimization technique.

In [18], Ranjitha et al. proposed a method, to convert UML State diagram to Extended Finite State Machine (EFSM) Graph, which is used for generating test cases by using a tool.

There are some other methods [29][32][37] that generate test cases from UML diagrams using a similar approach. But none of the methods discuss generation of LCSAJ test cases.

In [13], Offutt and Abdurazik proposed a method to generate system test cases from State-based formal specifications. Test cases are generated automatically from UML specifications using UMLTest tool.

In [17], Kim et al. proposed a method for generating test cases for class testing using UML State chart diagrams. State charts are transformed to extended FSMs (EFSM) and flow graphs, and then conventional data flow analysis techniques are applied to generate test cases.

In [33], Wang et al. proposed a method for converting UML diagrams into FSM diagrams. XMI files are obtained from these FSMs, which are used for automatic generation of test cases.

# III. ILLUSTRATION OF THE METHOD

This section illustrates test case creation from State chart diagram with a case study.

# 3.1 Case study

Purchase Online System (POS) is taken as an example and as shown below State chart diagram is drawn for POS in Figure 1.



Figure 1. State chart diagram for POS system.





Figure 2. Control Flow Graph (CFG) derived from POS State chart diagram.

#### 3.1.1 Adjacency/Incidence Matrices

The Adjacency matrix and Incidence matrix for CFG are shown in Tables 1 and 2 respectively. These matrices are useful to traverse through all States and Transitions.

| Table 1. Adjacency matrix of CFG |                                  |           |           |    |    |           |           |
|----------------------------------|----------------------------------|-----------|-----------|----|----|-----------|-----------|
| SI S2 S3 S4                      |                                  |           |           |    |    |           | <i>S4</i> |
| S                                | 1                                | 0         | 1         |    | 0  |           | 0         |
| S2                               | 2                                | 0         |           | 1  | 1  |           | 0         |
| Sá                               | 3                                | 1         | 0         |    | 0  |           | 2         |
| S4                               | 4                                | 1         | 1 0       |    | 0  |           | 0         |
|                                  | Table 2. Incidence matrix of CFG |           |           |    |    |           |           |
|                                  | <i>T1</i>                        | <i>T2</i> | <i>T3</i> | T4 | T5 | <i>T6</i> | Τ7        |
| <b>S</b> 1                       | 1                                | 0         | 0         | 1  | 0  | 0         | 1         |
| <b>S</b> 2                       | 1                                | 1         | 1         | 0  | 0  | 0         | 0         |
| <b>S</b> 3                       | 0                                | 1         | 0         | 1  | 1  | 1         | 0         |
| <b>S</b> 4                       | 0                                | 0         | 0         | 0  | 1  | 1         | 1         |

#### 3.2LCSAJ based test case generation method

Linear Code Sequence and Jump (LCSAJ) is a linear sequence of executable code commencing either at the start of the program or at a point to which control flow may jump. Same principle is applied in UML State diagram, where linear control flow from one State to another is realized through Transitions. In case of code, each statement in the code is considered as node. Analogous to this, each State is considered as one node, in the case of State diagram based representation. Basically an LCSAJ consists of a body of code through which the flow of control proceeds sequentially and then terminated by a jump in the control flow. In the proposed approach, an LCSAJ represents linear control flow from one State itself in case of self transition and so on. Each LCSAJ yields one test case. The Start State, Transition and jump to the State of each LCSAJ constitute precondition, test description and expected result of the corresponding test case.

## 3.2.1 LCSAJ table from POS State chart diagram

LCSAJ table is created by traversing from Initial State to other States through transitions. LCSAJ is formed when control is transferred to new State, if a transition is encountered. Table 3 shows LCSAJ table derived from POS State diagram as shown in Figure 2. In LCSAJ1 in the Table 1, control is transferred to S2 from S1, when transition T1 occurs and then jump to State 2 happens through Transition 3. Every jump to a new State formulates one LCSAJ.

| LCSAJ  | Start      | Finish     | Jump To    | Transitions |
|--------|------------|------------|------------|-------------|
| Number | State      | State      | State      |             |
| 1      | <b>S</b> 1 | S2         | S2         | T1, T3      |
| 2      | S2         | <b>S</b> 3 | <b>S</b> 4 | T2,T5       |
| 3      | S2         | <b>S</b> 3 | <b>S</b> 4 | T2,T6       |
| 4      | S2         | <b>S</b> 3 | <b>S</b> 1 | T2,T4       |
| 5      | <b>S</b> 4 | <b>S</b> 1 |            | T7          |
| 6      | <b>S</b> 1 | S2         | <b>S</b> 3 | T1,T2       |
| 7      | <b>S</b> 3 | <b>S</b> 4 | <b>S</b> 1 | T6,T7       |
| 8      | <b>S</b> 3 | <b>S</b> 4 | <b>S</b> 1 | T5,T7       |
| 9      | <b>S</b> 3 | <b>S</b> 1 |            | T4          |

Table 3. LCSAJ table derived from POS State diagram

# 3.2.2 Converting LCSAJ Table to test cases

LCSAJ can be converted to test cases as shown in Table 4. Start State in LCSAJ table is mapped with Pre-condition in test case. Similarly Finish State is mapped with Expected Result. Transitions traced through LCSAJ algorithm are mapped with Description in test case.

| Tał   | Table 4. Test cases generated from LCSAJ table |             |                 |  |  |  |  |  |
|-------|------------------------------------------------|-------------|-----------------|--|--|--|--|--|
|       | LCSAJ Test cases                               |             |                 |  |  |  |  |  |
| Sl.no | Precondition                                   | Description | Expected result |  |  |  |  |  |
| 1     | <b>S</b> 3                                     | T4          | <b>S</b> 1      |  |  |  |  |  |
| 2     | <b>S</b> 4                                     | T7          | <b>S</b> 1      |  |  |  |  |  |
| 3     | <b>S</b> 1                                     | T1,T2       | <b>S</b> 3      |  |  |  |  |  |
| 4     | <b>S</b> 1                                     | T1,T3       | S2              |  |  |  |  |  |
| 5     | S2                                             | T2,T4       | <b>S</b> 1      |  |  |  |  |  |
| 6     | S2                                             | T2,T5       | S4              |  |  |  |  |  |
| 7     | S2                                             | T2,T6       | S4              |  |  |  |  |  |
| 8     | <b>S</b> 3                                     | T5,T7       | <b>S</b> 1      |  |  |  |  |  |
| 9     | <b>S</b> 3                                     | T6,T7       | S1              |  |  |  |  |  |

3.2.3 Metrics from LCSAJ

Calculation of Test Effectiveness Ratio (TER):

TER1 = Number of States covered by test data/total number of States

TER2 = Number of Transitions covered by the test data/total number of transitions

TER3 = Number of LCSAJs executed by the test data/total number of LCSAJs

Advantage:

When TER3 = 100% has been achieved it follows that TER2 = 100% and TER1 = 100% have also been achieved.

# 3.3 Decision table based test case generation method

Table 5 shows decision table derived from POS State diagram. The States constitute variables in the decision table. The transitions constitute values for these variables.

Table 5. Decision table derived from POS State diagram

| <i>S1</i> | <i>S</i> 2 | <i>S3</i> | <i>S4</i> |  |
|-----------|------------|-----------|-----------|--|
| T1        | T2         | T4        | T7        |  |
|           | T3+T2      | T5        |           |  |
|           |            | T6        |           |  |

3.3.1 Converting Decision table to test cases

Decision table can be converted to MC/DC test cases as shown in Table 6, using Pairwise testing tool (Allpairs tool) [38].

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1), January - 2016, pp. 169-190

| Table 6. Test cases generated from decision table |           |            |           |           |                     |  |
|---------------------------------------------------|-----------|------------|-----------|-----------|---------------------|--|
| Test case                                         | <i>S1</i> | <i>S</i> 2 | <i>S3</i> | <i>S4</i> | Expected result     |  |
| 1                                                 | T1        | T2         | T4        | T7        | S2,S3,S1            |  |
| 2                                                 | T1        | T3+T2      | T5        | T7        | \$2,\$2,\$3,\$4,\$1 |  |
| 3                                                 | T1        | T2         | T6        | T7        | \$2,\$3,\$4,\$1     |  |
| 4                                                 | ~T1       | T3+T2      | T4        | ~T7       | \$2,\$2,\$3,\$1     |  |
| 5                                                 | ~T1       | T2         | T5        | ~T7       | \$2,\$3,\$4,\$1     |  |
| 6                                                 | ~T1       | T3+T2      | T6        | ~T7       | \$2,\$2,\$3,\$4,\$1 |  |

### 3.4 Automatic Generation of Test Cases

The detailed steps for generating test cases from State chart diagram are given in section 3.4.1 through 3.4.3. 3.4.1 Process Flow Diagram from State chart diagram

Figure 3 illustrates the steps involved in generating test cases automatically from State chart diagram.



Figure 3. Process steps to generate test cases from State chart.

3.4.2 Automatic generation of LCSAJ Test cases from State chart diagram

XMI file [11] is exported from corresponding State chart diagram in StarUML [6] tool environment. From XMI file, States, incoming Transitions and outgoing Transitions are identified. Using Incidence matrix, Transition traversal table is created as shown in Table 7. In this table, Transitions and their corresponding Start State and End State are tabulated.

| Table 7. Transition travel table for POS CFG |                                                                                    |  |  |  |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|
| Start State                                  | End State                                                                          |  |  |  |  |  |
| S1                                           | S2                                                                                 |  |  |  |  |  |
| S2                                           | <b>S</b> 3                                                                         |  |  |  |  |  |
| S2                                           | <b>S</b> 2                                                                         |  |  |  |  |  |
| <b>S</b> 3                                   | <b>S</b> 1                                                                         |  |  |  |  |  |
| <b>S</b> 3                                   | <b>S</b> 4                                                                         |  |  |  |  |  |
| <b>S</b> 3                                   | <b>S</b> 4                                                                         |  |  |  |  |  |
| S4                                           | <b>S</b> 1                                                                         |  |  |  |  |  |
|                                              | Sition travel table<br>Start State<br>S1<br>S2<br>S2<br>S3<br>S3<br>S3<br>S3<br>S4 |  |  |  |  |  |

From Transition travel table, LCSAJ table is constructed. Start States and End States are directly taken from Transition travel table to LCSAJ table. 'Jump to' States are identified by searing End State in Start State column of Transition travel table. 'Jump to' State is other than Start and End States, in case of non-self transitions. In case of self transitions, 'Jump to' State is same as End State. If End State is Initial State, there is no 'Jump to' State. LCSAJ table for POS State diagram is automatically generated as shown in Table 8.

| Table 8. Au | uto generated | LCSAJ | table from | POS | State | diagram |
|-------------|---------------|-------|------------|-----|-------|---------|
|             | 0             |       |            |     |       | 0       |

| Start state        | Finish State       | Jump to state      | Transitions                  |
|--------------------|--------------------|--------------------|------------------------------|
| WaitingForSale     | EnteringItems      | WaitingForPayment  | makeNewSale,endSale          |
| WaitingForSale     | EnteringItems      | EnteringItems      | makeNewSale,enterItem        |
| EnteringItems      | WaitingForPayment  | WaitingForSale     | endSale,makeCashPayment      |
| EnteringItems      | WaitingForPayment  | AuthorizingPayment | endSale,makeCreditPayment    |
| EnteringItems      | WaitingForPayment  | AuthorizingPayment | endSale,makeChequePayment    |
| AuthorizingPayment | WaitingForSale     | WaitingForSale     | authorized                   |
| WaitingForPayment  | WaitingForSale     | WaitingForSale     | makeCashPayment              |
| WaitingForPayment  | AuthorizingPayment | WaitingForSale     | makeCreditPayment,authorized |
| WaitingForPayment  | AuthorizingPayment | WaitingForSale     | makeChequePayment,authorized |

From LCSAJ table, LCSAJ test cases are generated as shown in Table 9.

| Test    | Pre Condition      | Description                  | Expected result    |
|---------|--------------------|------------------------------|--------------------|
| Case ID |                    |                              |                    |
| TC1     | WaitingForSale     | makeNewSale,endSale          | WaitingForPayment  |
| TC2     | WaitingForSale     | makeNewSale,enterItem        | EnteringItems      |
| TC3     | EnteringItems      | endSale,makeCashPayment      | WaitingForSale     |
| TC4     | EnteringItems      | endSale,makeCreditPayment    | AuthorizingPayment |
| TC5     | EnteringItems      | endSale,makeChequePayment    | AuthorizingPayment |
| TC6     | AuthorizingPayment | Authorized                   | WaitingForSale     |
| TC7     | WaitingForPayment  | makeCashPayment              | WaitingForSale     |
| TC8     | WaitingForPayment  | makeCreditPayment,authorized | WaitingForSale     |
| TC9     | WaitingForPayment  | makeChequePayment,authorized | WaitingForSale     |

Table 9. Generated test cases from LCSAJ table

The algorithm for generating LCSAJ test cases is shown in Figure 4.

| Algorith | nm for automatic LCSAJ test case generation                              |
|----------|--------------------------------------------------------------------------|
| 1.       | Start State = Initial State                                              |
| 2.       | Push all outgoing Transitions to Stack.                                  |
| 3.       | If Stack is empty terminate algorithm.                                   |
| 4.       | If Stack is non-empty, pop one Transition. Find Start/End States for     |
|          | this Transition using Transition traversal table                         |
| 5.       | Search End State in Start State column of Transition traversal table     |
|          | and find corresponding 'Jump to' State and 'Jump through'                |
|          | Transition.                                                              |
| 6.       | If 'Jump through' Transition is not self Transition, then 'Jump to'      |
|          | State is other than End State. If it is self Transition, 'Jump to' State |
|          | is same as End State. If End State is Initial State, then no 'Jump to'   |
|          | State.                                                                   |
| 7.       | Start State = 'Jump to' State                                            |
| 8.       | Repeat from Step 2.                                                      |

Figure 4. Algorithm to generate LCSAJ test cases.

3.4.3 Automatic generation of MC/DC test cases from State chart diagram

Decision table is created using States and their corresponding outgoing Transitions. States constitute variables in the decision table, and Transitions constitute values for each variable. Table 10 shows Decision table generated from POS State diagram.

| Table 10. Auto generated Decision table for POS |                   |                    |            |  |
|-------------------------------------------------|-------------------|--------------------|------------|--|
| Authorizing                                     |                   |                    |            |  |
| WaitingForSale                                  | Entering-Items    | WaitingForPayment  | Payment    |  |
| Make-NewSale                                    | endSale           | makeCash-Payment   | authorized |  |
|                                                 | enterItem+endSale | makeCredit-Payment |            |  |
|                                                 |                   | makeChequePayment  |            |  |

Using 'All pairs' tool, MC/DC test cases are generated from the Decision table as shown in Table 11.

|    | 16          | able 11. Gen | erated MC/DC test cases | s by Anpan's | 1001                 |
|----|-------------|--------------|-------------------------|--------------|----------------------|
| TC | Waiting     | Entering     | Waiting ForPayment      | Authorizing  | Expected Result      |
| ID | ForSale     | Items        |                         | Payment      |                      |
| 1  | makeNewSale | endSale      | makeCashPayment         | authorized   | 1.EnteringItems      |
|    |             |              |                         |              | 2.WaitingForPayment  |
|    |             |              |                         |              | 3.WaitingForSale     |
|    |             |              |                         |              | 4.WaitingForSale     |
| 2  | makeNewSale | enterItem    | makeCreditPayment       | authorized   | 1.EnteringItems      |
|    |             |              |                         |              | 2.EnteringItems      |
|    |             |              |                         |              | 3.AuthorizingPayment |
|    |             |              |                         |              | 4.WaitingForSale     |

Table 11 Generated MC/DC test cases by 'Allpairs' tool

|   |              |           |                   |             | January - 2016, pp. 169-190 |
|---|--------------|-----------|-------------------|-------------|-----------------------------|
| 3 | makeNewSale  | endSale   | makeChequePayment | authorized  | 1.EnteringItems             |
|   |              |           |                   |             | 2.WaitingForPayment         |
|   |              |           |                   |             | 3.AuthorizingPayment        |
|   |              |           |                   |             | 4.WaitingForSale            |
| 4 | ~makeNewSale | enterItem | makeCashPayment   | ~authorized | 1.EnteringItems             |
|   |              |           |                   |             | 2.EnteringItems             |
|   |              |           |                   |             | 3.WaitingForSale            |
|   |              |           |                   |             | 4.WaitingForSale            |
| 5 | ~makeNewSale | endSale   | makeCreditPayment | ~authorized | 1.EnteringItems             |
|   |              |           |                   |             | 2.WaitingForPayment         |
|   |              |           |                   |             | 3.AuthorizingPayment        |
|   |              |           |                   |             | 4.WaitingForSale            |
| 6 | ~makeNewSale | enterItem | makeChequePayment | ~authorized | 1.EnteringItems             |
|   |              |           |                   |             | 2.EnteringItems             |
|   |              |           |                   |             | 3.AuthorizingPayment        |
|   |              |           |                   |             | 4.WaitingForSale            |

## **IV. COMPARISON WITH OTHER METHODS**

There are others who have considered a State diagram as input for test case generation. An example can be seen in [28], where test suites can be automatically generated from State charts. This is done by mapping State chart elements to the STRIPS planning language. The application of the State of the art planning tool graph plan yields the different test cases as solutions to a planning problem. This method has following limitations:

- 1. The expected system responses have to be added to the test sequence manually to yield complete test cases.
- 2. Test case coverage is not ensured.
- 3. Test cases are not optimized.

The proposed method has the following advantages:

- 1. Expected Results are automatically added to ensure completeness of test cases.
- 2. Test case coverage is ensured by LCSAJ algorithm.
- 3. Test cases are optimized by generating MC/DC test cases using Pairwise test approach.

There are several research projects [4][18][33] proposing concepts for UML based test tools. However, most of them generate exhaustive test cases, which in turn significantly lower the chance of those concepts being accepted in industry projects. The proposed method addresses generating Multiple Conditions/Decisions Coverage (MC/DC) test cases from State diagram, which are optimized in number, at the same time ensuring 100% transition and State coverage. The usage of 'Allpairs' tool ensures reducing number of test cases being generated.

In Agile environment, it is recommended to use LCSAJ test cases during developmental stage and use MC/DC test cases for regression testing, once software is stabilized.

## V. EXPERIMENTAL RESULTS

The proposed approach is deployed in few applications and results are obtained. The following applications are considered for experimentation:

- a. Account system
- b. Borrow book
- c. Currency controller
- d. Ice vending machine
- e. Safe home system
- f. Simple ATM (SATM)
- g. Triangle program
- h. Wiper controller

## 5.1 Description

The brief descriptions of all applications are given in the following section:

5.1.1 Account system

An Account system helps user to open 'new' account. Once account is created user can do various transactions such as balance checking, debit money, credit etc. If the balance is maintained less than 0, then the status is changed to 'overdrawn'. If the account is not accessed for more than 5 years, then the status is changed to 'locked'. Also Account system allows user to close the account. The State diagram of the Account system is shown in Figure A-1 and its corresponding automatically generated LCSAJ and MC/DC test cases are given in Table A-1 and A-2 respectively in Appendix A.

### 5.1.2 Borrow book

The Borrow book application allows user to search book in the database. If book is found in the database, user can reserve the book in his name. The Borrow book application has login feature and checks authentication of the user. The

State diagram of the Borrow book is shown in Figure B-1 and its corresponding automatically generated LCSAJ and MC/DC test cases are given in Table B-1 and B-2 respectively in Appendix B.

## 5.1.3 Currency converter

The Currency converter application allows user to convert currency from USD or Indian rupees to equivalent other country currencies. It allows user to enter input value and select target country. It throws error, if either input value not entered or target country is not selected. The State diagram of the Currency converter is shown in Figure C-1 and its corresponding automatically generated LCSAJ and MC/DC test cases are given in Table C-1 and C-2 respectively in Appendix C.

## 5.1.4 Ice cream vending machine

The Ice cream vending machine allows user to purchase ice creams automatically. It allows user to select different flavour of ice creams such as Vanilla, Chocolate, Strawberry and Butterscotch etc. It calculates money based on selected flavour and number of ice creams ordered. When user inserts money into the slot, it calculates balance amount and returns back. The State diagram of the Ice vending machine is shown in Figure D-1 and its corresponding automatically generated LCSAJ and MC/DC test cases are given in Table D-1 and D-2 respectively in Appendix D.

### 5.1.5 Safe home system

The Safe home system is a security system that helps user to monitor home. It alerts home owner in case of any intruder entering home, through various mechanisms such as sending SMS, making emergency call, activating alarm, video recording and blinking control panel. The State diagram of the Safe home system is shown in Figure E-1 and its corresponding automatically generated LCSAJ and MC/DC test cases are given in Table E-1 and E-2 respectively in Appendix E.

### 5.1.6 Simple ATM system

The Simple ATM system provides banking transactions such as withdraw money, deposit money, balance checking, print mini statement etc. User requires a valid debit card and need to enter valid PIN number to avail banking services. The State diagram of the Simple ATM system is shown in Figure F-1 and its corresponding automatically generated LCSAJ and MC/DC test cases are given in Table F-1 and F-2 respectively in Appendix F.

### 5.1.7 Triangle program

The Triangle program displays triangle type such as Isosceles, Scalene, Equilateral based on the values of the sides a, b, c. It displays an error message, in case of invalid entry. The State diagram of the Triangle program is shown in Figure G-1 and its corresponding automatically generated LCSAJ and MC/DC test cases are given in Table G-1 and G-2 respectively in Appendix G.

## 5.1.8 Wiper controller

The Wiper controller allows user to set different wiper speed by changing position of lever and dial. The lever position can be changed to off, inter, low and high. When lever position is set to inter, dial positions can be changed to 1, 2 and 3. The State diagram of the Wiper controller is shown in Figure H-1 and its corresponding automatically generated LCSAJ and MC/DC test cases are given in Table H-1 and H-2 respectively in Appendix H.

### 5.2 Summary

Table 12 shows summary of LCSAJ and MC/DC test cases derived from State diagrams of various applications. Column B shows MC/DC test cases possible to derive from State diagram. Column C shows optimized number of test cases using 'Allpairs' tool.

| Project name        | LCSAJ Test MC/DC Test cases |        | Total Test |       |
|---------------------|-----------------------------|--------|------------|-------|
|                     | cases                       | Before | After      | cases |
|                     | (A)                         | (B)    | (C)        | (A+C) |
| Account system      | 12                          | 112    | 28         | 40    |
| Borrow book         | 7                           | 4      | 4          | 11    |
| Currency converter  | 19                          | 32     | 10         | 29    |
| Ice vending machine | 11                          | 8      | 6          | 17    |
| Safe home           | 17                          | 16     | 8          | 25    |
| Simple ATM          | 22                          | 32     | 10         | 32    |
| Triangle<br>program | 13                          | 5      | 5          | 18    |
| Wiper controller    | 16                          | 10     | 10         | 26    |

# Table 12. Summary of LCSAJ and MC/DC test cases

### 5.3 Mutation analysis

The effectiveness of generated test cases for Triangle program is checked using fault injection technique called mutation analysis [39][40]. Mutants are created from Triangle program after injecting errors in program to make program faulty. If

test case set is capable of capturing these errors, then mutants are killed by tests. The mutation analysis report after creating mutants for Triangle program is shown in Table 13.

Totally 18 test cases failed because of 5 mutants. Mutants 3, 4, 5 each have 4 test cases failed out of 18 test cases executed. This shows even though test cases are generated from design, any defect injected by developer is easily captured by these cases.

| Mutation | Change in                                                                                                                             | code                                                | Number of | Total |        |
|----------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------|-------|--------|
| number   |                                                                                                                                       |                                                     | Mutants   |       |        |
|          | Correct                                                                                                                               | Buggy                                               | LCSAJ     | MC/DC | Mutant |
| 1        | !(a>0 && b>0 &&                                                                                                                       | !(a>0    b>0                                        | 2         | 1     | 3      |
|          | c>0)                                                                                                                                  | c>0)                                                |           |       |        |
| 2        | (a <b+c)&&(b<c+a)&&< td=""><td><math>(a &lt; b + c) \  (b &lt; c + a) \ </math></td><td>2</td><td>1</td><td>3</td></b+c)&&(b<c+a)&&<> | $(a < b + c) \  (b < c + a) \ $                     | 2         | 1     | 3      |
|          | (c <a+b)< td=""><td>(c<a+b)< td=""><td></td><td></td><td></td></a+b)<></td></a+b)<>                                                   | (c <a+b)< td=""><td></td><td></td><td></td></a+b)<> |           |       |        |
| 3        | a==b && b==c &&                                                                                                                       | $a == b \parallel b == c \parallel$                 | 3         | 1     | 4      |
|          | c==a                                                                                                                                  | c==a                                                |           |       |        |
| 4        | (a==b &&                                                                                                                              | (a==b && b<>c)                                      | 3         | 1     | 4      |
|          | b<>c)  (a==c &&                                                                                                                       | &&(a==c &&                                          |           |       |        |
|          | a<>b)                                                                                                                                 | a<>b) &&(b==c                                       |           |       |        |
|          | (b==c && a<>c)                                                                                                                        | && a<>c)                                            |           |       |        |
| 5        | a<>b && b<>c &&                                                                                                                       | a==b && b<>c                                        | 3         | 1     | 4      |
|          | c<>a                                                                                                                                  | && c<>a                                             |           |       |        |
|          | Total fails category w                                                                                                                | vise                                                | 13        | 5     | 18     |

Table 13. Mutation analysis for Triangle program test cases

# VI. CONCLUSIONS

In this paper, a method has been proposed to generate functional test cases from LCSAJ table and MC/DC test cases from Decision table. These two tables are automatically derived from UML Use case State chart diagram. As State chart diagram is developed early in the development cycle, early generation of test cases is possible by the proposed method. Besides, the proposed method is more prone to automation and reduces effort for writing exhaustive test cases.

The case study discussed here has shown that the proposed method can be used for applications in both PC based and in embedded environments. As State chart diagram represent dynamic behaviour of the system, and generating MC/DC test cases helps to test system behaviour under various input conditions. LCSAJ based test generation approach ensures 100% test coverage.

### REFERENCES

- [1] P. Jorgensen, Software Testing: A Craftsman's Approach. CRC Press,2002.
- [2] B. Beizer, Software Testing Techniques, 2nd ed. Van Nostrand Reinhold, 1990.
- [3] Craig Larman, "Applying UML and patterns ", Addison Wesley, 2000.
- [4] P. Samuel R. Mall A.K. Bothra, "Automatic test case generation using unified modeling language (UML) state diagrams", The Institution of Engineering and Technology, 2008.
- [5] Qaisar A. Malik, Dragos, Trus, can, Johan Lilius,"Using UML Models and Formal Verification in Model-Based Testing", 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems 2010.
- [6] Star UML Tool. http://staruml.sourceforge.net/en/, Jul. 2011.
- [7] Padma Iyenghar1, Elke Pulvermueller1, Clemens Westerkamp,"Towards Model-Based Test Automation for Embedded Systems Using UML and UTP", IEEE ETFA 2011.
- [8] Object Constraint Language 2.0 is available from Object Mangement Group's web site http://www.omg.org/
- [9] Vinaya Sawant, Dragos, Ketan Shah,"Automatic Generation of Test Cases from UML Models", International Conference on Technology Systems and Management 2011.
- [10] G.J. Myers, C.sandler, T.Badgett, and T.M.Thomas. "The art of software Testing", 2nd Edition. Wiley, 2004
- [11] OMG, "XML Metadata Interchange (XMI),v2.1",2004.
- [12] I. K. El-Far and J. A. Whittaker, "Model-based software testing," Encyclopedia on Software Engineering, 2001.
- [13] J. Offutt and A. Abdurazik, "Generating Tests from UML Specifications", Second International Conference on the Unified Modeling Language, Springer, New York 1999, pp.416-429
- [14] W. M. Ho, J.-M. Jquel, A. L. Guennec, and F. Pennaneac'h, "UMLAUT: An extendible UML transformation framework," in Automated Software Engineering, 1999, pp. 275–278. [Online]. Available: citeseer.ist.psu.edu/ho99umlaut.html
- [15] T. J'eron and P. Morel, "Test generation derived from model-checking," in CAV '99: Proceedings of the 11th International Conference on Computer Aided Verification. London, UK: Springer-Verlag, 1999, pp. 108–121.

- [16] L. Bousquet, H. Martin, and J. Jzquel, "Conformance testing from uml specifications." [Online]. Available: citeseer.ist.psu.edu/683853.html
- [17] KIM Y.G., HONG H.S., BAE D.H., ET AL.: 'Test cases generation from UML state diagram', Proc. Softw., 1999, 146, (4),pp. 187–192
- [18] Ranjita Swain, Vikas Panthi and Durga Prasad Mohapatra, "Automatic Test case Generation From UML State Chart Diagram", International Journal of Computer Applications (0975 8887) Volume 42– No.7, March 2012.
- [19] Gnesi Stefania, Latella, Diego, and Massink Mieke. 2004. Formal test-case generation for UML statecharts, Proceedings of the Ninth IEEE International Conference on Engineering Complex Computer Systems Navigating Complexity in the e-Engineering Age, 2004, pp.75 – 84.
- [20] Joanne M. Atlee and John Gannon, "State-Based Model Checking of Event-Driven System Requirements", IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 1, JANUARY 1993.
- [21] John Joseph Chilenski and Steven P. Miller, "Applicability of modified conditioddecision coverage to software testing", Software Engineering Journal, September 1994.
- [22] Luqi, Hongji Yang and Xiaodong Zhang, "Constructing an Automated Testing Oracle: An Effort to Produce Reliable Software", Computer Software and Applications Conference, 1994.
- [23] Apfelbaum and Larry, "Automated functional test generation", AUTOTESTCON '95.
- [24] Mark Stephenson, Tom Lynch and Steve Walters, "Using Advanced Tools to Automate the Design, Generation and Execution of Formal Qualification Testing", AUTOTESTCON '96.
- [25] Peter Savage, Steve Waiters and Mark Stephenson, "Automated Test Methodology for Operational Flight Programs", Aerospace Conference, 1997. Proceedings.
- [26] T. Savor and R.E. Seviora, "An Approach to Automatic Detection of Software Failures in Real-Time Systems", Real-Time Technology and Applications Symposium, 1997. Proceedings.
- [27] A. Jeerson Outt, Yiwei Xiong and Shaoying Liu, "Criteria for Generating Specication-based Tests", Proceedings Fifth IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'99).
- [28] Peter Fröhlich and Johannes Link, "Automated Test Case Generation from Dynamic Models", Proceedings ECOOP, 2000.
- [29] Diego Latella and Mieke Massink, "A Formal Testing Framework for UML Statechart Diagrams Behaviours: From Theory to Automatic Verification", Proceedings of the 6th IEEE International Symposium on High Assurance Systems Engineering, 2001.
- [30] Philippe Chevalley and Pascale Thevenod-Fosse, "An Empirical Evaluation of Statistical Testing Designed from UML State Diagrams: the Flight Guidance System Case Study", Proceedings of 12th International Symposium on Software Reliability Engineering, 2001.
- [31] Khaled El-Fakih, Anton Kolomeez, Svetlana Prokopenko and Nina Yevtushenko, "Extended Finite State Machine Based Test Derivation Driven By User Defined Faults", International Conference on Software Testing, Verification, and Validation, 2008.
- [32] TSUN S. CHOW, "Testing Software Design Modeled by Finite-State Machines", IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 3, MAY 1978.
- [33] Xi Wang, Liang Guo and Huaikou Miao, "An Approach to Transforming UML Model to FSM Model for Automatic Testing", International Conference on Computer Science and Software Engineering, 2008.
- [34] Qurat-ul-ann Farooq, Muhammad Zohaib Z.Iqbal, Zafar I Malik and Zafar I Malik, "A Model-Based Regression Testing Approach for Evolving Software Systems with Flexible Tool Support", 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems, 2010.
- [35] Reinhard Hametner, Dietmar Winkler, Thomas Östreicher, Natascha Surnic and Stefan Biffl, "Selecting UML Models for Test-Driven Development along the Automation Systems Engineering Process", IEEE Conference on Emerging Technologies and Factory Automation, 2010.
- [36] Reinhard Hametner, Benjamin Kormann, Birgit Vogel-Heuser, Dietmar Winkler and Alois Zoitl, "Test Case Generation Approach for Industrial Automation Systems", 5th International Conference on Automation, Robotics and Applications, 2011.
- [37] Manuj Aggarwal and Sangeeta Sabharwal, "Test Case Generation from UML State Machine Diagram: A Survey", Third International Conference on Computer and Communication Technology, 2012.
- [38] ALL PAIRS Tool. <u>http://www.satisfice.com/tools.shtml</u>.
- [39] S. Kansomkeat and W. Rivepiboon, "Automated-generating test case using UML statechart diagrams", Proc. SAICSIT 2003, ACM 2003 pp. 296 – 300, 2003.
- [40] Demillo, Lipton and Sayward, "Hints on Test Data Selection:Help for the Practicing Programmer", IEEE, 1978.

## APPENDIX

This section contains State diagrams of applications taken for experiment and their corresponding LCSAJ and MC/DC test cases.

Appendix A: Account system



Figure A-1: State diagram for Account system

| TestCase | Pre       |                                      | Expected  |
|----------|-----------|--------------------------------------|-----------|
| ID       | Condition | Description                          | result    |
| TC1      | Open      | freeze,unfreeze                      | Open      |
| TC2      | Open      | freeze, balance after frozen         | Frozen    |
| TC3      | Frozen    | unfreeze                             | Open      |
| TC4      | Open      | debit so that b<0,credit so that b>0 | Open      |
|          |           | debit so that b<0,debit after        |           |
| TC5      | Open      | overdrawn                            | Overdrawn |
|          |           | debit so that b<0,credit after       |           |
| TC6      | Open      | overdrawn                            | Overdrawn |
|          |           | debit so that b<0,balance after      |           |
| TC7      | Open      | overdrawn                            | Overdrawn |
| TC8      | Overdrawn | credit so that b>0                   | Open      |
| TC9      | Open      | no transaction for 5years, settle    | Closed    |
|          |           | no transaction for 5years, balance   |           |
| TC10     | Open      | after inactive                       | Inactive  |
| TC11     | Open      | close and b=0, balance after closed  | Closed    |
| TC12     | Inactive  | settle, balance after closed         | Closed    |

| Table A-1.   | LCSAJ test | cases from | Account  | System | State diagram |
|--------------|------------|------------|----------|--------|---------------|
| 1 4010 11 11 |            | eases nom  | riccount | System | State anglam  |

| Table A-2. MC/DC test cases from Account System State diagram |  |
|---------------------------------------------------------------|--|
|---------------------------------------------------------------|--|

| TC<br>ID | Open                  | Over drawn                 | Frozen                     | Inactive                     | Closed                  | Expected Result                                                              |
|----------|-----------------------|----------------------------|----------------------------|------------------------------|-------------------------|------------------------------------------------------------------------------|
| 1        | credit after<br>open  | credit so<br>that b>0      | unfreeze                   | settle                       | balance<br>after closed | 1.Open 2.Open 3.Open 4.Closed<br>5.Closed                                    |
| 2        | debit after<br>open   | debit after<br>overdrawn   | balance<br>after<br>frozen | balance<br>after<br>inactive | balance<br>after closed | <ol> <li>Open 2.Overdrawn 3.Frozen</li> <li>Inactive 5.Closed</li> </ol>     |
| 3        | balance<br>after open | credit after<br>overdrawn  | unfreeze                   | balance<br>after<br>inactive | balance<br>after closed | <ol> <li>Open 2.Overdrawn 3.Open</li> <li>Inactive 5.Closed</li> </ol>       |
| 4        | freeze                | balance after<br>overdrawn | balance<br>after<br>frozen | settle                       | balance<br>after closed | <ol> <li>1.Frozen 2.Overdrawn 3.Frozen</li> <li>4.Closed 5.Closed</li> </ol> |
| 5        | debit so that<br>b<0  | credit so<br>that b>0      | balance<br>after<br>frozen | balance<br>after<br>inactive | balance<br>after closed | <ol> <li>1.Overdrawn 2.Open 3.Frozen</li> <li>4.Inactive 5.Closed</li> </ol> |

|    | ,,                         |                           |                 |                   |                          | January - 2016, pp. 169-190                    |
|----|----------------------------|---------------------------|-----------------|-------------------|--------------------------|------------------------------------------------|
| 6  | no                         | debit after               | unfreeze        | settle            | balance                  | 1.Inactive 2.Overdrawn 3.Open                  |
|    | transaction<br>for 5 years | overdrawn                 |                 |                   | after closed             | 4.Closed 5.Closed                              |
| 7  | close and                  | credit after              | halance         | settle            | halance                  | 1 Closed 2 Overdrawn 3 Frozen                  |
| ,  | b=0                        | overdrawn                 | after<br>frozen | settle            | after closed             | 4.Closed 5.Closed                              |
| 8  | credit after               | balance after             | unfreeze        | balance           | ~balance                 | 1.Open 2.Overdrawn 3.Open                      |
| 0  | open                       | overdrawn                 |                 | after             | after closed             | 4.Inactive 5.Closed                            |
| 9  | debit after                | credit so                 | unfreeze        | settle            | ~balance                 | 1.Open 2.Open 3.Open 4.Closed                  |
| 10 | balance                    | debit after               | halance         | settle            | ~halance                 | 1 Open 2 Overdrawn 3 Frozen                    |
| 10 | after open                 | overdrawn                 | after           | bettle            | after closed             | 4.Closed 5.Closed                              |
| 11 | freeze                     | credit after              | unfreeze        | balance           | ~balance                 | 1 Frozen 2 Overdrawn 3 Open                    |
| 11 | neeze                      | overdrawn                 | uniteeze        | after             | after closed             | 4.Inactive 5.Closed                            |
| 12 | debit so that              | balance after             | unfreeze        | settle            | ~balance                 | 1. Overdrawn 2. Overdrawn 3. Open              |
|    | b<0                        | overdrawn                 |                 | 50000             | after closed             | 4.Closed 5.Closed                              |
| 13 | no                         | credit so                 | balance         | balance           | ~balance                 | 1.Inactive 2.Open 3.Frozen                     |
| 10 | transaction                | that b>0                  | after           | after             | after closed             | 4.Inactive 5.Closed                            |
|    | for 5 years                |                           | frozen          | inactive          | unter closed             | ninuetive 5.closed                             |
| 14 | close and                  | debit after               | unfreeze        | balance           | ~halance                 | 1 Closed 2 Overdrawn 3 Open                    |
| 11 | b=0                        | overdrawn                 | unneeze         | after             | after closed             | 4.Inactive 5.Closed                            |
| 15 | credit after               | credit after              | balance         | ~settle           | ~balance                 | 1.Open 2.Overdrawn 3.Frozen                    |
|    | open                       | overdrawn                 | after<br>frozen |                   | after closed             | 4.Closed 5.Closed                              |
| 16 | debit after                | balance after             | ~balance        | ~balance          | ~balance                 | 1.Open 2.Overdrawn 3.Frozen                    |
|    | open                       | overdrawn                 | after<br>frozen | after<br>inactive | after closed             | 4.Inactive 5.Closed                            |
| 17 | balance<br>after open      | credit so                 | ~unfreeze       | ~settle           | ~balance<br>after closed | 1.Open 2.Open 3.Open 4.Closed                  |
| 18 | freeze                     | debit after               | ~halance        | ~halance          | ~halance                 | 1 Frozen 2 Overdrawn 3 Frozen                  |
| 10 | neeze                      | overdrawn                 | after           | after             | after closed             | 4.Inactive 5.Closed                            |
| 19 | debit so that              | credit after              | ~unfreeze       | ~balance          | ~balance                 | 1. Overdrawn 2. Overdrawn 3. Open              |
|    | b<0                        | overdrawn                 |                 | after             | after closed             | 4.Inactive 5.Closed                            |
| 20 | no                         | balance after             | ~balance        | ~settle           | ~balance                 | 1.Inactive 2.Overdrawn 3.Frozen                |
|    | transaction<br>for 5 years | overdrawn                 | after<br>frozen |                   | after closed             | 4.Closed 5.Closed                              |
| 21 | close and                  | credit so                 | ~balance        | ~balance          | ~balance                 | 1.Closed 2.Open 3.Frozen 4.Inactive            |
|    | b=0                        | that b>0                  | after<br>frozen | after<br>inactive | after closed             | 5.Closed                                       |
| 22 | credit after               | debit after               | ~balance        | ~balance          | ~balance                 | 1.Open 2.Overdrawn 3.Frozen                    |
|    | open                       | overdrawn                 | after<br>frozen | after<br>inactive | after closed             | 4.Inactive 5.Closed                            |
| 23 | debit after                | credit after<br>overdrawn | ~unfreeze       | ~settle           | ~balance<br>after closed | 1.Open 2.Overdrawn 3.Open<br>4.Closed 5.Closed |
| 24 | balance                    | balance after             | ~balance        | ~balance          | ~balance                 | 1.Open 2.Overdrawn 3.Frozen                    |
| 21 | after open                 | overdrawn                 | after<br>frozen | after             | after closed             | 4.Inactive 5.Closed                            |
| 25 | freeze                     | credit so<br>that b>0     | ~unfreeze       | ~settle           | ~balance<br>after closed | 1.Frozen 2.Open 3.Open 4.Closed<br>5.Closed    |
| 26 | debit so that              | debit after               | ~balance        | ~settle           | ~balance                 | 1. Overdrawn 2. Overdrawn 3. Frozen            |
|    | b<0                        | overdrawn                 | after<br>frozen | June              | after closed             | 4.Closed 5.Closed                              |
| 27 | no                         | credit after              | ~unfreeze       | ~balance          | ~balance                 | 1.Inactive 2.Overdrawn 3.Open                  |
|    | transaction for 5 years    | overdrawn                 |                 | after<br>inactive | after closed             | 4.Inactive 5.Closed                            |
| 28 | close and                  | balance after             | ~unfreeze       | ~settle           | ~balance                 | 1.Closed 2.Overdrawn 3.Open                    |
| -  | b=0                        | overdrawn                 |                 | · · · · •         | after closed             | 4.Closed 5.Closed                              |

Appendix B: Borrow book



Figure B-1: State diagram for Borrow book

| Table B-1. LCS | SAJ test cases f | from Borrow | book State | diagram |
|----------------|------------------|-------------|------------|---------|
|                |                  |             |            |         |

| TestCaseID | PreCondition | Description               | Expected result |
|------------|--------------|---------------------------|-----------------|
|            | Search       |                           |                 |
| TC1        | screen       | Enter title,Select book   | Book details    |
|            |              | Select book,Borrow with   |                 |
| TC2        | Result list  | login false               | Login screen    |
|            |              | Select book,Borrow with   |                 |
| TC3        | Result list  | login true                | Book reserved   |
|            |              | Borrow with login         |                 |
| TC4        | Book details | false,Successful login    | Book reserved   |
|            | Book         |                           |                 |
| TC5        | reserved     | Timeout                   | Search screen   |
| TC6        | Login screen | Successful login, Timeout | Search screen   |
|            |              | Borrow with login         |                 |
| TC7        | Book details | true, Timeout             | Search screen   |

| able D-2. MC/DC lest cases noin Donow book State diagram |
|----------------------------------------------------------|
|----------------------------------------------------------|

|    |             |        |            |            |          | 5                               |
|----|-------------|--------|------------|------------|----------|---------------------------------|
| TC | Search      | Result | Book       | Login      | Book     | Expected Result                 |
| ID | screen      | list   | details    | screen     | reserved |                                 |
| 1  | Enter title | Select | Borrow     | Successful | Timeout  | 1.Result list 2.Book details    |
|    |             | book   | with login | login      |          | 3.Login screen 4.Book reserved  |
|    |             |        | false      |            |          | 5.Search screen                 |
| 2  | Enter title | Select | Borrow     | Successful | Timeout  | 1.Result list 2.Book details    |
|    |             | book   | with login | login      |          | 3.Book reserved 4.Book reserved |
|    |             |        | true       |            |          | 5.Search screen                 |

# Appendix C: Currency Converter



Figure C-1: State diagram for Currency converter

| TestCase | Pre Condition                  | Description                                                                           | Expected result             |
|----------|--------------------------------|---------------------------------------------------------------------------------------|-----------------------------|
| ID       | The Common                     | Description                                                                           | Ехресней тезин              |
| TC1      | Idle                           | Click Compute when both inputs<br>blank, Click OK on error msg                        | Idle                        |
| TC2      | Missing US dollar and          | Click OK on error msg                                                                 | Idle                        |
| TC3      | Idle                           | Click on any country button as 1st<br>input,Click Compute when dollar not<br>selected | Missing US dollar message   |
| TC4      | Idle                           | Click on any country button as 1st<br>input,Enter US dollar amount as 2nd<br>input    | Both inputs done            |
| TC5      | Idle                           | Enter US dollar amount as 1st<br>input,Click Compute when country<br>not selected     | Missing country message     |
| TC6      | Idle                           | Enter US dollar amount as 1st<br>input,Click on any country button as<br>2nd input    | Both inputs done            |
| TC7      | Country selected               | Click Compute when dollar not<br>selected,Click OK on dollar missing                  | Country selected            |
| TC8      | Missing US dollar<br>message   | Click OK on dollar missing<br>msg,Click Compute when dollar not<br>selected           | Missing US dollar message   |
| TC9      | Missing US dollar<br>message   | Click OK on dollar missing<br>msg,Enter US dollar amount as 2nd<br>input              | Both inputs done            |
| TC10     | US dollar amount entered       | Click Compute when country not<br>selected,Click OK on country<br>missing msg         | US dollar amount entered    |
| TC11     | Missing country message        | Click OK on country missing<br>msg,Click Compute when country<br>not selected         | Missing country message     |
| TC12     | Missing country message        | Click OK on country missing<br>msg,Click on any country button as<br>2nd input        | Both inputs done            |
| TC13     | Both inputs done               | Click Compute when both inputs<br>done.Click clear/quit                               | Idle                        |
| TC14     | Country selected               | Enter US dollar amount as 2nd<br>input,Click Compute when both<br>inputs done         | Equivalent amount displayed |
| TC15     | Country selected               | Enter US dollar amount as 2nd input, Click Clear or Quit                              | Idle                        |
| TC16     | US dollar amount entered       | Click on any country button as 2nd<br>input,Click Compute when both<br>inputs done    | Equivalent amount displayed |
| TC17     | US dollar amount entered       | Click on any country button as 2nd input, Click Clear or Ouit                         | Idle                        |
| TC18     | Both inputs done               | Click Clear or Ouit                                                                   | Idle                        |
| TC19     | Equivalent amount<br>displayed | Click clear/quit                                                                      | Idle                        |

| Table C-1. L | CSAJ test o | cases from | Currency | Converter | State diagram |
|--------------|-------------|------------|----------|-----------|---------------|

|          |                  | Т                   | able C-2. M                       | C/DC test c            | ases from Cur                     | rency Conv                         | verter State                  | diagram                        |                                            |
|----------|------------------|---------------------|-----------------------------------|------------------------|-----------------------------------|------------------------------------|-------------------------------|--------------------------------|--------------------------------------------|
| TC<br>ID | Idle             | Country<br>selected | US<br>dollar<br>amount<br>entered | Both<br>inputs<br>done | Equivalent<br>amount<br>displayed | Missing<br>US<br>dollar<br>message | Missing<br>country<br>message | Missing<br>US<br>dollar<br>and | Expected Result                            |
|          |                  |                     |                                   |                        |                                   |                                    |                               | country<br>message             |                                            |
| 1        | Click<br>Compute | Click<br>Compute    | Click<br>Compute                  | Click<br>Compute       | Click<br>clear/quit               | Click<br>OK on                     | Click<br>OK on                | Click<br>OK on                 | 1.Missing US dollar<br>and country message |

| Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6( |                                                      |                                                    |                                                         |                                                    |                      |                                             | tware Engineering 6(1),                      |                                 |                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|----------------------|---------------------------------------------|----------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                               | when<br>both<br>inputs<br>blank                      | when<br>dollar not<br>selected                     | when<br>country<br>not<br>selected                      | when<br>both<br>inputs<br>done                     |                      | dollar<br>missing<br>msg                    | country<br>missing<br>msg                    | error<br>msg                    | 2.Missing US dollar<br>message 3.Missing<br>country message<br>4.Equivalent amount<br>displayed 5.Idle                                                                                          |
| 2                                                                                                             | Click on                                             | Enter US                                           | Click on                                                | Click                                              | Click                | Click                                       | Click                                        | Click                           | 6.Country selected<br>7.US dollar amount<br>entered 8.Idle                                                                                                                                      |
| 2                                                                                                             | any<br>country<br>button as<br>1st input             | dollar<br>amount<br>as 2nd<br>input                | any<br>country<br>button as<br>2nd<br>input             | Clear or<br>Quit                                   | clear/quit           | OK on<br>dollar<br>missing<br>msg           | OK on<br>country<br>missing<br>msg           | OK on<br>error<br>msg           | 2.Both inputs done<br>3.Both inputs done<br>4.Idle 4.Idle 5.Idle<br>6.Country selected<br>7.US dollar amount                                                                                    |
| 3                                                                                                             | Enter<br>US<br>dollar<br>amount<br>as 1st<br>input   | Click<br>Compute<br>when<br>dollar not<br>selected | Click on<br>any<br>country<br>button as<br>2nd<br>input | Click<br>Compute<br>when<br>both<br>inputs<br>done | Click<br>clear/quit  | Click<br>OK on<br>dollar<br>missing<br>msg  | Click<br>OK on<br>country<br>missing<br>msg  | Click<br>OK on<br>error<br>msg  | 1.US dollar amount<br>entered 2.Missing US<br>dollar message 3.Both<br>inputs done<br>4.Equivalent amount<br>displayed 5.Idle<br>6.Country selected<br>7.US dollar amount<br>entered 8.Idle     |
| 4                                                                                                             | Click<br>Clear or<br>Quit                            | Enter US<br>dollar<br>amount<br>as 2nd<br>input    | Click<br>Compute<br>when<br>country<br>not<br>selected  | Click<br>Clear or<br>Quit                          | Click<br>clear/quit  | Click<br>OK on<br>dollar<br>missing<br>msg  | Click<br>OK on<br>country<br>missing<br>msg  | Click<br>OK on<br>error<br>msg  | 1.Idle 1.Idle 2.Both<br>inputs done 3.Missing<br>country message<br>4.Idle 4.Idle 5.Idle<br>6.Country selected<br>7.US dollar amount<br>entered 8.Idle                                          |
| 5                                                                                                             | Click<br>Compute<br>when<br>both<br>inputs<br>blank  | Enter US<br>dollar<br>amount<br>as 2nd<br>input    | Click on<br>any<br>country<br>button as<br>2nd<br>input | Click<br>Compute<br>when<br>both<br>inputs<br>done | ~Click<br>clear/quit | ~Click<br>OK on<br>dollar<br>missing<br>msg | ~Click<br>OK on<br>country<br>missing<br>msg | ~Click<br>OK on<br>error<br>msg | 1.Missing US dollar<br>and country message<br>2.Both inputs done<br>3.Both inputs done<br>4.Equivalent amount<br>displayed 5.Idle<br>6.Country selected<br>7.US dollar amount<br>entered 8.Idle |
| 6                                                                                                             | Click on<br>any<br>country<br>button as<br>1st input | Click<br>Compute<br>when<br>dollar not<br>selected | Click<br>Compute<br>when<br>country<br>not<br>selected  | Click<br>Clear or<br>Quit                          | ~Click<br>clear/quit | ~Click<br>OK on<br>dollar<br>missing<br>msg | ~Click<br>OK on<br>country<br>missing<br>msg | ~Click<br>OK on<br>error<br>msg | 1.Country selected<br>2.Missing US dollar<br>message 3.Missing<br>country message<br>4.Idle 4.Idle 5.Idle<br>6.Country selected<br>7.US dollar amount<br>entered 8.Idle                         |
| 7                                                                                                             | Enter<br>US<br>dollar<br>amount<br>as 1st<br>input   | Enter US<br>dollar<br>amount<br>as 2nd<br>input    | Click<br>Compute<br>when<br>country<br>not<br>selected  | Click<br>Clear or<br>Quit                          | ~Click<br>clear/quit | ~Click<br>OK on<br>dollar<br>missing<br>msg | ~Click<br>OK on<br>country<br>missing<br>msg | ~Click<br>OK on<br>error<br>msg | 1.US dollar amount<br>entered 2.Both inputs<br>done 3.Missing<br>country message<br>4.Idle 4.Idle 5.Idle<br>6.Country selected<br>7.US dollar amount<br>entered 8.Idle                          |
| 8                                                                                                             | Click<br>Clear or<br>Quit                            | Click<br>Compute<br>when<br>dollar not<br>selected | Click on<br>any<br>country<br>button as<br>2nd<br>input | Click<br>Compute<br>when<br>both<br>inputs<br>done | ~Click<br>clear/quit | ~Click<br>OK on<br>dollar<br>missing<br>msg | ~Click<br>OK on<br>country<br>missing<br>msg | ~Click<br>OK on<br>error<br>msg | 1.Idle 1.Idle 2.Missing<br>US dollar message<br>3.Both inputs done<br>4.Equivalent amount<br>displayed 5.Idle<br>6.Country selected<br>7.US dollar amount                                       |

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1), January - 2016, pp. 169-190

| 9  | Click<br>Compute<br>when<br>both<br>inputs<br>blank  | ~Click<br>Compute<br>when<br>dollar not<br>selected | ~Click<br>Compute<br>when<br>country<br>not<br>selected  | Click<br>Clear or<br>Quit                          | ~Click<br>clear/quit | ~Click<br>OK on<br>dollar<br>missing<br>msg | ~Click<br>OK on<br>country<br>missing<br>msg | ~Click<br>OK on<br>error<br>msg | entered 8.Idle<br>1.Missing US dollar<br>and country message<br>2.Missing US dollar<br>message 3.Missing<br>country message<br>4.Idle 4.Idle 5.Idle<br>6.Country selected<br>7.US dollar amount<br>entered 8 Idle |
|----|------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------|---------------------------------------------|----------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | Click on<br>any<br>country<br>button as<br>1st input | ~Enter<br>US dollar<br>amount<br>as 2nd<br>input    | ~Click<br>on any<br>country<br>button as<br>2nd<br>input | Click<br>Compute<br>when<br>both<br>inputs<br>done | ~Click<br>clear/quit | ~Click<br>OK on<br>dollar<br>missing<br>msg | ~Click<br>OK on<br>country<br>missing<br>msg | ~Click<br>OK on<br>error<br>msg | 1.Country selected<br>2.Both inputs done<br>3.Both inputs done<br>4.Equivalent amount<br>displayed 5.Idle<br>6.Country selected<br>7.US dollar amount<br>entered 8.Idle                                           |

Appendix D: Ice cream Vending Machine



Figure D-1: State diagram for Ice cream vending machine

| TestCase ID | Pre Condition                 | Description                                   | Expected result                  |
|-------------|-------------------------------|-----------------------------------------------|----------------------------------|
| TC1         | Idle                          | Ice selected, item selected <=15              | Display amount<br>to be inserted |
| TC2         | Idle                          | Ice selected, item selected > 15              | Display pricelist                |
| TC3         | Display pricelist             | item selected <=15,money inserted             | busy do<br>calculate             |
| TC4         | Display amount to be inserted | money inserted, eject ice if balance $\geq 0$ | Eject icecream                   |
| TC5         | Display amount to be inserted | money inserted, return money if balance < 0   | Return money                     |
| TC6         | busy do calculate             | eject ice if balance >= 0,balance =<br>0      | Idle                             |
| TC7         | busy do calculate             | eject ice if balance >= 0,balance ><br>0      | Return money                     |
| TC8         | Eject icecream                | balance = 0                                   | Idle                             |
| TC9         | Eject icecream                | balance > 0,take money                        | Idle                             |
| TC10        | busy do calculate             | return money if balance < 0,take money        | Idle                             |
| TC11        | Return money                  | take money                                    | Idle                             |

|    | Table D-2. WC/DC test cases from ice cream vending Machine State diagram |           |          |              |          |        |                               |
|----|--------------------------------------------------------------------------|-----------|----------|--------------|----------|--------|-------------------------------|
| TC | Idle                                                                     | Display   | Display  | busy do      | Eject    | Return | Expected Result               |
| ID |                                                                          | pricelist | amount   | calculate    | icecream | money  |                               |
|    |                                                                          |           | to be    |              |          |        |                               |
|    |                                                                          |           | inserted |              |          |        |                               |
| 1  | Ice                                                                      | item      | money    | eject ice if | balance  | take   | 1.Display pricelist 2.Display |
|    | selected                                                                 | selected  | inserted | balance >=   | = 0      | money  | amount to be inserted 3.busy  |
|    |                                                                          | <=15      |          | 0            |          |        | do calculate 4.Eject icecream |

|   |          |            |           |                  |         |       | 5.Idle 6.Idle                   |
|---|----------|------------|-----------|------------------|---------|-------|---------------------------------|
| 2 | Ice      | item       | money     | return           | balance | take  | 1.Display pricelist 2.Display   |
|   | selected | selected > | inserted  | money if         | > 0     | money | pricelist 3.busy do calculate   |
|   |          | 15         |           | balance < 0      |         | ·     | 4.Return money 5.Return         |
|   |          |            |           |                  |         |       | money 6.Idle                    |
| 3 | ~Ice     | item       | ~monev    | return           | balance | ~take | 1.Display pricelist 2.Display   |
| - | selected | selected   | inserted  | money if         | = 0     | money | amount to be inserted 3 busy    |
|   |          | <=15       |           | balance $< 0$    | -       | j     | do calculate 4.Return money     |
|   |          |            |           |                  |         |       | 5 Idle 6 Idle                   |
| 4 | ~Ice     | item       | ~monev    | eiect ice if     | balance | ~take | 1. Display pricelist 2. Display |
| • | selected | selected > | inserted  | balance >=       | > 0     | money | pricelist 3 busy do calculate   |
|   | serected | 15         | moercea   | 0                | 2.0     | money | 4 Fiect icecream 5 Return       |
|   |          | 15         |           | 0                |         |       | money 6 Idle                    |
| 5 | ~Ice     | item       | ~money    | ~eject ice if    | halance | ~take | 1 Display pricelist 2 Display   |
| 5 |          |            | · inone y |                  | Dalance | Take  | 1.Display preclist 2.Display    |
|   | selected | selected   | inserted  | balance $\geq =$ | >0      | money | amount to be inserted 3.busy    |
|   |          | <=15       |           | 0                |         |       | do calculate 4.Eject icecream   |
|   |          |            |           |                  |         |       | 5.Return money 6.Idle           |
| 6 | ~Ice     | item       | ~money    | ~return          | balance | ~take | 1.Display pricelist 2.Display   |
|   | selected | selected > | inserted  | money if         | = 0     | money | pricelist 3.busy do calculate   |
|   |          | 15         |           | balance < 0      |         | 2     | 4.Return money 5.Idle 6.Idle    |

Appendix E: Safe home system



SensorTriggered and start timer Figure E-1: State diagram for Safe home system

| TestCase ID | PreCondition           | Description                                   | Expected result        |
|-------------|------------------------|-----------------------------------------------|------------------------|
| TC1         | Resetting              | SystemOK,Reset                                | Resetting              |
| TC2         | Resetting              | SystemOK, ActivatePW                          | MonitoringSystemStatus |
| TC3         | Idle                   | Reset                                         | Resetting              |
| TC4         | Idle                   | ActivatePW,DeactivatePW                       | Idle                   |
| TC5         | Idle                   | ActivatePW,SensorTriggered<br>and start timer | ActingOnAlarm          |
| TC6         | MonitoringSystemStatus | DeactivatePW,Reset                            | Resetting              |
| TC7         | MonitoringSystemStatus | DeactivatePW, ActivatePW                      | MonitoringSystemStatus |
| TC8         | ActingOnAlarm          | FalseAlarm,DeactivatePW                       | Idle                   |
| TC9         | ActingOnAlarm          | FalseAlarm,SensorTriggered<br>and start timer | ActingOnAlarm          |
| TC10        | ActingOnAlarm          | timeout,DeactivatePW                          | Idle                   |
| TC11        | ActingOnAlarm          | timeout,SensorTriggered and start timer       | ActingOnAlarm          |
| TC12        | MonitoringSystemStatus | SensorTriggered and start timer,FalseAlarm    | MonitoringSystemStatus |
| TC13        | MonitoringSystemStatus | SensorTriggered and start                     | MonitoringSystemStatus |

Table E-1. LCSAJ test cases from Safe home system State diagram

|      |                        |                                                                         | . , 11                 |
|------|------------------------|-------------------------------------------------------------------------|------------------------|
|      |                        | timer,timeout                                                           |                        |
| TC14 | MonitoringSystemStatus | SensorTriggered and start timer,DeactivatePW                            | Idle                   |
| TC15 | MonitoringSystemStatus | SensorTriggered and start<br>timer,SensorTriggered and<br>restart timer | ActingOnAlarm          |
| TC16 | ActingOnAlarm          | DeactivatePW,Reset                                                      | Resetting              |
| TC17 | ActingOnAlarm          | DeactivatePW, ActivatePW                                                | MonitoringSystemStatus |
|      |                        |                                                                         |                        |

Table E-2. MC/DC test cases from Safe home system State diagram

|    | 1         | $able L^{-2}$ . WIC/ | De test cases nom | Sale nome system : |                             |
|----|-----------|----------------------|-------------------|--------------------|-----------------------------|
| TC | Resetting | Idle                 | Acting On         | MonitoringS        | Expected Result             |
| ID |           |                      | Alarm             | ystem Status       |                             |
| 1  | System    | Reset                | FalseAlarm        | DeactivatePW       | 1.Idle 2.Resetting          |
|    | OK        |                      |                   |                    | 3.MonitoringSystemStatus    |
|    |           |                      |                   |                    | 4.Idle 4.Idle               |
| 2  | System    | ActivatePW           | timeout           | SensorTriggered    | 1.Idle                      |
|    | OK        |                      |                   | and start timer    | 2.MonitoringSystemStatus    |
|    |           |                      |                   |                    | 3.MonitoringSystemStatus    |
|    |           |                      |                   |                    | 4.ActingOnAlarm             |
| 3  | System    | Reset                | DeactivatePW      | SensorTriggered    | 1.Idle 2.Resetting 3.Idle   |
|    | OK        |                      |                   | and start timer    | 3.Idle 4.ActingOnAlarm      |
| 4  | System    | ActivatePW           | SensorTriggered   | DeactivatePW       | 1.Idle                      |
|    | OK        |                      | and restart timer |                    | 2.MonitoringSystemStatus    |
|    |           |                      |                   |                    | 3.ActingOnAlarm 4.Idle      |
|    |           |                      |                   |                    | 4.Idle                      |
| 5  | ~System   | ActivatePW           | FalseAlarm        | SensorTriggered    | 1.Idle                      |
|    | OK        |                      |                   | and start timer    | 2.MonitoringSystemStatus    |
|    |           |                      |                   |                    | 3.MonitoringSystemStatus    |
|    | _         | _                    |                   |                    | 4.ActingOnAlarm             |
| 6  | ~System   | Reset                | timeout           | DeactivatePW       | 1.Idle 2.Resetting          |
|    | OK        |                      |                   |                    | 3.MonitoringSystemStatus    |
| _  | ~         |                      |                   |                    | 4.Idle 4.Idle               |
| 7  | ~System   | ActivatePW           | DeactivatePW      | DeactivatePW       | 1.Idle                      |
|    | OK        |                      |                   |                    | 2.MonitoringSystemStatus    |
|    | ~         | -                    | ~                 | ~                  | 3.Idle 3.Idle 4.Idle 4.Idle |
| 8  | ~System   | Reset                | Sensor Triggered  | SensorTriggered    | 1.Idle 2.Resetting          |
|    | OK        |                      | and restart timer | and start timer    | 3.ActingOnAlarm             |
|    |           |                      |                   |                    | 4.ActingOnAlarm             |

# Appendix F: Simple ATM system



Figure F-1: State diagram for Simple ATM system

| Table F-1 LCSAL    | test cases from Sin | unle ATM Syster  | n State diagram    |
|--------------------|---------------------|------------------|--------------------|
| Table I - I. LCSAJ |                     | IPIC AT M Dyster | ii State ulagraffi |

|             |               | 1 0                      | e                 |
|-------------|---------------|--------------------------|-------------------|
| TestCase ID | Pre Condition | Description              | Expected result   |
| TC1         | Idle          | Card OK, PIN OK and      | Await transaction |
|             |               | display transaction type | selection         |
| TC2         | Idle          | Card OK, Press cancel or | Idle              |
|             |               | PIN failed               |                   |

|      |                                   |                                                                      | January - 2016, pp. 169-1   |
|------|-----------------------------------|----------------------------------------------------------------------|-----------------------------|
| TC3  | Await PIN                         | PIN OK and display transaction type, Deposit                         | Deposit                     |
| TC4  | Await PIN                         | button<br>PIN OK and display<br>transaction type,Balance             | Balance                     |
| TC5  | Await PIN                         | button<br>PIN OK and display<br>transaction                          | Withdraw                    |
| TC6  | Await PIN                         | type,Withdraw button<br>PIN OK and display<br>transaction type,Press | Idle                        |
| TC7  | Await<br>transaction<br>selection | Deposit button,Take<br>deposit                                       | Close session               |
| TC8  | Await<br>transaction<br>selection | Balance button,Display balance                                       | Close session               |
| TC9  | Await<br>transaction<br>selection | Withdraw<br>button,Dispense money                                    | Close session               |
| TC10 | Balance                           | Display balance, Another session                                     | Await transaction selection |
| TC11 | Balance                           | Display balance.Goto idle                                            | Idle                        |
| TC12 | Deposit                           | Take deposit, Another session                                        | Await transaction selection |
| TC13 | Deposit                           | Take deposit,Goto idle                                               | Idle                        |
| TC14 | Withdraw                          | Dispense money, Another session                                      | Await transaction selection |
| TC15 | Withdraw                          | Dispense money,Goto<br>idle                                          | Idle                        |
| TC16 | Close session                     | Another session,Deposit button                                       | Deposit                     |
| TC17 | Close session                     | Another session,Balance button                                       | Balance                     |
| TC18 | Close session                     | Another session, Withdraw button                                     | Withdraw                    |
| TC19 | Close session                     | Another session, Press cancel                                        | Idle                        |
| TC20 | Close session                     | Goto idle                                                            | Idle                        |
| TC21 | Await<br>transaction<br>selection | Press cancel                                                         | Idle                        |
| TC22 | Await PIN                         | Press cancel or PIN failed                                           | Idle                        |

| TC<br>ID | Idle       | Await PIN                                    | Await<br>transaction<br>selection | Balance            | Deposit         | With draw         | Close<br>session   | Expected Result                                                                                                                                                                                                                   |
|----------|------------|----------------------------------------------|-----------------------------------|--------------------|-----------------|-------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Card<br>OK | PIN OK<br>and display<br>transaction<br>type | Deposit<br>button                 | Display<br>balance | Take<br>deposit | Dispense<br>money | Another<br>session | <ol> <li>Await PIN</li> <li>Await</li> <li>transaction</li> <li>selection</li> <li>Deposit</li> <li>Close session</li> <li>Close session</li> <li>Close session</li> <li>Await</li> <li>transaction</li> <li>selection</li> </ol> |

| Anbunatha | n et al., I | nternational J                                | Iournal of Ad      | vanced Rese         | earch in C       | omputer Scie       | ence and Se        | oftware Engineering 6(1),                                                                                                                                                                |
|-----------|-------------|-----------------------------------------------|--------------------|---------------------|------------------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         | Bad         | Press                                         | Balance            | Display             | Take             | Dispense           | <i>Ja</i><br>Goto  | <i>nuary - 2016, pp. 169-190</i><br>1.Idle 2.Idle                                                                                                                                        |
|           | card        | cancel or<br>PIN failed                       | button             | balance             | deposit          | money              | idle               | 3.Balance<br>4.Close session<br>5.Close session<br>6.Close session<br>7.Idle                                                                                                             |
| 3         | Card<br>OK  | Press<br>cancel or<br>PIN failed              | Withdraw<br>button | Display<br>balance  | Take<br>deposit  | Dispense<br>money  | Another session    | 1.Await PIN<br>2.Idle<br>3.Withdraw<br>4.Close session<br>5.Close session<br>6.Close session<br>7.Await<br>transaction<br>selection                                                      |
| 4         | Bad<br>card | PIN OK<br>and display<br>transaction<br>type  | Press<br>cancel    | Display<br>balance  | Take<br>deposit  | Dispense<br>money  | Goto<br>idle       | 1.Idle 2.Await<br>transaction<br>selection 3.Idle<br>4.Close session<br>5.Close session<br>6.Close session<br>7.Idle                                                                     |
| 5         | Bad<br>card | Press<br>cancel or<br>PIN failed              | Deposit<br>button  | ~Display<br>balance | ~Take<br>deposit | ~Dispense<br>money | Another<br>session | <ol> <li>I.Idle 2.Idle</li> <li>3.Deposit</li> <li>4.Close session</li> <li>5.Close session</li> <li>6.Close session</li> <li>7.Await</li> <li>transaction</li> <li>selection</li> </ol> |
| 6         | Card<br>OK  | PIN OK<br>and display<br>transaction<br>type  | Balance<br>button  | ~Display<br>balance | ~Take<br>deposit | ~Dispense<br>money | Goto<br>idle       | 1.Await PIN<br>2.Await<br>transaction<br>selection<br>3.Balance<br>4.Close session<br>5.Close session<br>6.Close session<br>7.Idle                                                       |
| 7         | Bad<br>card | PIN OK<br>and display<br>transaction<br>type  | Withdraw<br>button | ~Display<br>balance | ~Take<br>deposit | ~Dispense<br>money | Goto<br>idle       | <ol> <li>I.Idle 2.Await</li> <li>transaction</li> <li>selection</li> <li>Withdraw</li> <li>Close session</li> <li>Close session</li> <li>Close session</li> <li>Close session</li> </ol> |
| 8         | Card<br>OK  | Press<br>cancel or<br>PIN failed              | Press<br>cancel    | ~Display<br>balance | ~Take<br>deposit | ~Dispense<br>money | Another session    | 1.Await PIN<br>2.Idle 3.Idle<br>4.Close session<br>5.Close session<br>6.Close session<br>7.Await<br>transaction<br>selection                                                             |
| 9         | ~Card<br>OK | ~PIN OK<br>and display<br>transaction<br>type | Deposit<br>button  | ~Display<br>balance | ~Take<br>deposit | ~Dispense<br>money | Goto<br>idle       | <ol> <li>Await PIN</li> <li>Await transaction selection</li> <li>Deposit</li> <li>Close session</li> <li>Close session</li> <li>Close session</li> </ol>                                 |

| Anbunatha | n et al.,    | International                      | Journal of A      | dvanced Res         | earch in C       | Computer Scie      | ence and So<br>Ja  | oftware Engineering 6(1),<br>nuary - 2016, pp. 169-190                                                                               |
|-----------|--------------|------------------------------------|-------------------|---------------------|------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 10        | ~Bad<br>card | ~ Press<br>cancel or<br>PIN failed | Balance<br>button | ~Display<br>balance | ~Take<br>deposit | ~Dispense<br>money | Another<br>session | 7.Idle<br>1.Idle 2.Idle<br>3.Balance<br>4.Close session<br>5.Close session<br>6.Close session<br>7.Await<br>transaction<br>selection |

# Appendix G: Triangle program



| Table | G-1. | LCSA. | J test | cases | from | Triangle | program | State di | iagram |   |
|-------|------|-------|--------|-------|------|----------|---------|----------|--------|---|
|       |      |       |        |       |      |          |         |          |        | - |

| TestCase ID | Pre Condition | Description                         | Expected result     |
|-------------|---------------|-------------------------------------|---------------------|
| TC1         | Enter         | Validate sides, All sides are       | Display Equilateral |
|             | sides(a,b,c)  | equal                               | triangle            |
| TC2         | Enter         | Validate sides, Two sides are       | Display isosceles   |
|             | sides(a,b,c)  | equal                               | triangle            |
| TC3         | Enter         | Validate sides, Unequal sides       | Display scalene     |
|             | sides(a,b,c)  |                                     | triangle            |
| TC4         | Enter         | Validate sides, Invalid sides error | Enter sides(a,b,c)  |
|             | sides(a,b,c)  | msg                                 |                     |
| TC5         | Enter         | Validate sides, Invalid triangle    | Enter sides(a,b,c)  |
|             | sides(a,b,c)  | error msg                           |                     |
| TC6         | Compute       | All sides are equal, timeout for    | Enter sides(a,b,c)  |
|             | triangle      | equilateral                         |                     |
| TC7         | Compute       | Two sides are equal, timeout for    | Enter sides(a,b,c)  |
|             | triangle      | isosceles                           |                     |
| TC8         | Compute       | Unequal sides, timeout for          | Enter sides(a,b,c)  |
|             | triangle      | scalene                             |                     |
| TC9         | Display       | timeout for equilateral             | Enter sides(a,b,c)  |
|             | Equilateral   |                                     |                     |
|             | triangle      |                                     |                     |
| TC10        | Display       | timeout for isosceles               | Enter sides(a,b,c)  |
|             | isosceles     |                                     |                     |
| TC11        | triangle      | time out for applance               | Enter sides (a h a) |
| ICH         | Display       | timeout for scalene                 | Enter sides(a,b,c)  |
|             | triangle      |                                     |                     |
| TC12        | Compute       | Invalid sides error msg             | Enter sides(a,b,c)  |
|             | triangle      | -                                   |                     |
| TC13        | Compute       | Invalid triangle error msg          | Enter sides(a,b,c)  |
|             | triangle      |                                     | · · · /             |

| Anbunathan et al., | International Journal of | <sup>F</sup> Advanced Researce | ch in Computer | r Science and Softward | e Engineering 6(1), |
|--------------------|--------------------------|--------------------------------|----------------|------------------------|---------------------|
|                    |                          |                                |                | January                | - 2016, pp. 169-190 |

| TC | Enter             | Compute                             | Display                    | Display                     | Display                   | Expected Result                                                                                                                            |
|----|-------------------|-------------------------------------|----------------------------|-----------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| ID | sides             | triangle                            | Equilateral                | isosceles                   | scalene                   |                                                                                                                                            |
|    | (a,b,c)           |                                     | triangle                   | triangle                    | triangle                  |                                                                                                                                            |
| 1  | Validate<br>sides | All sides<br>are<br>equal           | timeout for<br>equilateral | timeout<br>for<br>isosceles | timeout<br>for<br>scalene | <ol> <li>Compute triangle</li> <li>Display Equilateral<br/>triangle 3.Enter sides(a,b,c)</li> <li>Enter sides(a,b,c) 5.Enter</li> </ol>    |
| 2  | Validate<br>sides | Two<br>sides are<br>equal           | timeout for<br>equilateral | timeout<br>for<br>isosceles | timeout<br>for<br>scalene | sides(a,b,c)<br>1.Compute triangle<br>2.Display isosceles triangle<br>3.Enter sides(a,b,c) 4.Enter<br>sides(a,b,c) 5.Enter<br>sides(a,b,c) |
| 3  | Validate<br>sides | Unequal<br>sides                    | timeout for<br>equilateral | timeout<br>for<br>isosceles | timeout<br>for<br>scalene | 1.Compute triangle<br>2.Display scalene triangle<br>3.Enter sides(a,b,c) 4.Enter<br>sides(a,b,c) 5.Enter<br>sides(a,b,c)                   |
| 4  | Validate<br>sides | Invalid<br>sides<br>error<br>msg    | timeout for<br>equilateral | timeout<br>for<br>isosceles | timeout<br>for<br>scalene | 1.Compute triangle 2.Enter<br>sides(a,b,c) 3.Enter<br>sides(a,b,c) 4.Enter<br>sides(a,b,c) 5.Enter<br>sides(a,b,c)                         |
| 5  | Validate<br>sides | Invalid<br>triangle<br>error<br>msg | timeout for<br>equilateral | timeout<br>for<br>isosceles | timeout<br>for<br>scalene | 1.Compute triangle 2.Enter<br>sides(a,b,c) 3.Enter<br>sides(a,b,c) 4.Enter<br>sides(a,b,c) 5.Enter<br>sides(a,b,c)                         |

Table G-2. MC/DC test cases from Triangle program State diagram

Appendix H: Wiper controller







| TestCase | $P_{ro}$  | Description                                                                                     | Expected |
|----------|-----------|-------------------------------------------------------------------------------------------------|----------|
| ID       | Condition | Description                                                                                     | result   |
| TC1      | Off       | Set position to 1,Set position to 2 so that speed increases to 30                               | Low      |
| TC2      | Off       | Set position to 1,Set position to 0 so that speed decreases to 0                                | Off      |
| TC3      | Off       | Set position to 1,Set dial to 3 so that speed is set to 12                                      | Inter    |
| TC4      | Off       | Set position to 1,Set dial to 2 so that speed is set to 6                                       | Inter    |
| TC5      | Off       | Set position to 1,Set dial to 1 so that speed is set to 4                                       | Inter    |
| TC6      | Inter     | Set position to 2 so that speed increases to 30,Set position to 3 so that speed increases to 60 | High     |
| TC7      | Inter     | Set position to 2 so that speed increases to 30,Set position to 1                               | Inter    |
| TC8      | Low       | Set position to 3 so that speed increases to 60,Set position to 2 so that speed decreases to 30 | Low      |

Table H-1. LCSAJ test cases from Wiper Controller State diagram

| Anbunathan et al., Intern | national Jou | rnal of Advanced Research in Computer Science an                                                     | d Software Engineering 6(1), |
|---------------------------|--------------|------------------------------------------------------------------------------------------------------|------------------------------|
|                           |              |                                                                                                      | January - 2016, pp. 169-190  |
| TC9                       | High         | Set position to 2 so that speed decreases to $20$ Set position to 2 so that speed decreases to $(0)$ | High                         |
| <b>TC</b> 10              | *** 1        | 30, Set position to 3 so that speed increases to 60                                                  | <b>T</b>                     |
| 1010                      | Hıgh         | Set position to 2 so that speed decreases to 30,Set position to 1                                    | Inter                        |
| TC11                      | Low          | Set position to 1,Set position to 2 so that speed increases to 30                                    | Low                          |
| TC12                      | Low          | Set position to 1,Set position to 0 so that speed decreases to 0                                     | Off                          |
| TC13                      | Low          | Set position to 1,Set dial to 3 so that speed is set to 12                                           | Inter                        |
| TC14                      | Low          | Set position to 1,Set dial to 2 so that speed is set to 6                                            | Inter                        |
| TC15                      | Low          | Set position to 1,Set dial to 1 so that speed is set to 4                                            | Inter                        |
| TC16                      | Inter        | Set position to 0 so that speed decreases to $0$                                                     | Off                          |

| Table H-2. MC/DC test cases from | Wiper Controller Sta | ate diagram |
|----------------------------------|----------------------|-------------|
|----------------------------------|----------------------|-------------|

| TC ID | Off                 | Inter                 | Low                  | High                          | Expected Result                  |
|-------|---------------------|-----------------------|----------------------|-------------------------------|----------------------------------|
| 1     | Set position        | Set position to 2 so  | Set position to 3 so | Set position to 2 so          | 1.Inter 1.Inter                  |
|       | to 1                | that speed increases  | that speed           | that speed decreases          | 2.Low 3.High                     |
|       |                     | to 30                 | increases to 60      | to 30                         | 4.Low                            |
| 2     | Set position        | Set position to 0 so  | Set position to 1    | Set position to 2 so          | 1.Inter 1.Inter                  |
|       | to 1                | that speed decreases  |                      | that speed decreases          | 2.Off 3.Inter                    |
|       |                     | to 0                  |                      | to 30                         | 3.Inter 4.Low                    |
| 3     | Set position        | Set dial to 3 so that | Set position to 3 so | Set position to 2 so          | 1.Inter 1.Inter                  |
|       | to 1                | speed is set to 12    | that speed           | that speed decreases          | 2.Inter 3.High                   |
|       |                     |                       | increases to 60      | to 30                         | 4.Low                            |
| 4     | Set position        | Set dial to 2 so that | Set position to 1    | Set position to 2 so          | 1.Inter 1.Inter                  |
|       | to 1                | speed is set to 6     |                      | that speed decreases          | 2.Inter 3.Inter                  |
|       |                     |                       |                      | to 30                         | 3.Inter 4.Low                    |
| 5     | Set position        | Set dial to 1 so that | Set position to 3 so | Set position to 2 so          | 1.Inter 1.Inter                  |
|       | to 1                | speed is set to 4     | that speed           | that speed decreases          | 2.Inter 3.High                   |
|       |                     |                       | increases to 60      | to 30                         | 4.Low                            |
| 6     | ~Set position       | Set position to 2 so  | Set position to 1    | ~Set position to 2 so         | 1.Inter 1.Inter                  |
|       | to 1                | that speed increases  |                      | that speed decreases          | 2.Low 3.Inter                    |
| -     | <b>a</b>            | to 30                 |                      | to 30                         | 3.Inter 4.Low                    |
| 1     | ~Set position       | Set position to 0 so  | Set position to 3 so | ~Set position to 2 so         | 1.Inter 1.Inter                  |
|       | to 1                | that speed decreases  | that speed           | that speed decreases          | 2.Off 3.High                     |
| 0     | C                   |                       | increases to 60      | to 30                         | 4.LOW                            |
| 8     | ~Set position       | Set dial to 3 so that | Set position to 1    | ~Set position to 2 so         | 1.Inter 1.Inter                  |
|       | to 1                | speed is set to 12    |                      | that speed decreases          | 2.Inter 3.Inter                  |
| 0     | Cot a soltion       | Cat dial to 2 as that | Saturation to 2 an   | to 30                         | 3.Inter 4.Low                    |
| 9     | ~Set position       | Set dial to 2 so that | Set position to 3 so | ~Set position to 2 so         | 1.Inter 1.Inter                  |
|       | to 1                | speed is set to 6     | that speed           | that speed decreases          | 2.Inter 3.High                   |
| 10    | Sat magitize        | Sat dial to 1 as that | Set position to 1    | IU SU<br>Sat magitian to 2 as | 4.LOW                            |
| 10    | $\sim$ set position | Set that to 1 so that | Set position to 1    | ~Set position to 2 so         | 1.IIIter 1.IIIter                |
|       | 10 1                | speed is set to 4     |                      | to 20                         | 2.Inter 5.Inter<br>2 Inter 4 Low |