
© 2016, IJARCSSE All Rights Reserved Page | 169

 Volume 6, Issue 1, January 2016 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper

 Available online at: www.ijarcsse.com

Auto Test Generation from UML Use Case State Chart

Diagrams
Anbunathan R

*

Test Manager and Research Scholar

Bharathiar University, Tamilnadu,

India

Anirban Basu

Professor, Department of CSE

APS College of Engineering, Bangalore,

India

Abstract— Due to increasing use of OOAD techniques, UML-based testing has been gaining attention for Functional

Testing. In this paper, a novel method to generate test cases from UML State diagrams is presented. Use case State

chart diagram is parsed to extract information about States and Transitions. Using this information, LCSAJ test cases

and MC/DC test cases are generated automatically. The application of the method is illustrated with a case study.

The advantages of the proposed method are also discussed.

Keywords— UML diagram, UML testing; Test case generation; State chart diagram; Model Based Testing; Test

automation.

I. INTRODUCTION

Today UML is being widely used for designing systems and UML State chart diagram is playing a major role in

modelling the dynamic behaviour of an application or of an embedded system. Product development environment is

tightly coupled with UML tools for designing system behaviour. Test Engineers need to create test cases from State chart

diagrams to test the behaviour of the system, by inputting different combinations of test data.

Many methods have been proposed for generating test cases from UML State chart diagram. The method proposed in this

paper discusses test case generation from State chart diagram and generates Multiple Conditions/Decision coverage

(MC/DC) test cases and LCSAJ based test cases. The method is more effective than others with effectiveness measured

in terms of state coverage, transition coverage, and path coverage. The test cases generated by this method help to

achieve 100% test coverage without spending much effort.

II. RELATED WORK

This section discusses other methods that have been proposed for UML State chart based testing. In [4], Samuel et al.

proposed a method to generate test cases from UML State diagram. This approach can handle events, guards and

transitions. Test data also generated automatically using function minimization technique.

In [18], Ranjitha et al. proposed a method, to convert UML State diagram to Extended Finite State Machine (EFSM)

Graph, which is used for generating test cases by using a tool.

There are some other methods [29][32][37] that generate test cases from UML diagrams using a similar approach. But

none of the methods discuss generation of LCSAJ test cases.

In [13], Offutt and Abdurazik proposed a method to generate system test cases from State-based formal specifications.

Test cases are generated automatically from UML specifications using UMLTest tool.

In [17], Kim et al. proposed a method for generating test cases for class testing using UML State chart diagrams. State

charts are transformed to extended FSMs (EFSM) and flow graphs, and then conventional data flow analysis techniques

are applied to generate test cases.

In [33], Wang et al. proposed a method for converting UML diagrams into FSM diagrams. XMI files are obtained from

these FSMs, which are used for automatic generation of test cases.

III. ILLUSTRATION OF THE METHOD

This section illustrates test case creation from State chart diagram with a case study.

3.1 Case study

Purchase Online System (POS) is taken as an example and as shown below State chart diagram is drawn for POS in

Figure 1.

http://www.ijarcsse.com/

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 170

Figure 1. State chart diagram for POS system.

The corresponding Control Flow Graph (CFG) is drawn as shown in Figure 2.

Figure 2. Control Flow Graph (CFG) derived from POS State chart diagram.

3.1.1 Adjacency/Incidence Matrices

The Adjacency matrix and Incidence matrix for CFG are shown in Tables 1 and 2 respectively. These matrices are useful

to traverse through all States and Transitions.

Table 1. Adjacency matrix of CFG

S1 S2 S3 S4

S1 0 1 0 0

S2 0 1 1 0

S3 1 0 0 2

S4 1 0 0 0

Table 2. Incidence matrix of CFG

3.2 LCSAJ based test case generation method

Linear Code Sequence and Jump (LCSAJ) is a linear sequence of executable code commencing either at the start of the

program or at a point to which control flow may jump. Same principle is applied in UML State diagram, where linear

control flow from one State to another is realized through Transitions. In case of code, each statement in the code is

considered as node. Analogous to this, each State is considered as one node, in the case of State diagram based

representation. Basically an LCSAJ consists of a body of code through which the flow of control proceeds sequentially

and then terminated by a jump in the control flow. In the proposed approach, an LCSAJ represents linear control flow

from one State to another State and then the control flow is terminated by a jump to the third State through a transition or

jump to second State itself in case of self transition and so on. Each LCSAJ yields one test case. The Start State,

Transition and jump to the State of each LCSAJ constitute precondition, test description and expected result of the

corresponding test case.

T1 T2 T3 T4 T5 T6 T7

S1 1 0 0 1 0 0 1

S2 1 1 1 0 0 0 0

S3 0 1 0 1 1 1 0

S4 0 0 0 0 1 1 1

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 171

3.2.1 LCSAJ table from POS State chart diagram

LCSAJ table is created by traversing from Initial State to other States through transitions. LCSAJ is formed when control

is transferred to new State, if a transition is encountered. Table 3 shows LCSAJ table derived from POS State diagram as

shown in Figure2. In LCSAJ1 in the Table 1, control is transferred to S2 from S1, when transition T1 occurs and then

jump to State 2 happens through Transition 3. Every jump to a new State formulates one LCSAJ.

Table 3. LCSAJ table derived from POS State diagram

LCSAJ

Number

Start

State

Finish

State

Jump To

State

Transitions

1 S1 S2 S2 T1, T3

2 S2 S3 S4 T2,T5

3 S2 S3 S4 T2,T6

4 S2 S3 S1 T2,T4

5 S4 S1 T7

6 S1 S2 S3 T1,T2

7 S3 S4 S1 T6,T7

8 S3 S4 S1 T5,T7

9 S3 S1 T4

3.2.2 Converting LCSAJ Table to test cases

LCSAJ can be converted to test cases as shown in Table 4. Start State in LCSAJ table is mapped with Pre-condition in

test case. Similarly Finish State is mapped with Expected Result. Transitions traced through LCSAJ algorithm are

mapped with Description in test case.

Table 4. Test cases generated from LCSAJ table

LCSAJ Test cases

Sl.no Precondition Description Expected result

1 S3 T4 S1

2 S4 T7 S1

3 S1 T1,T2 S3

4 S1 T1,T3 S2

5 S2 T2,T4 S1

6 S2 T2,T5 S4

7 S2 T2,T6 S4

8 S3 T5,T7 S1

9 S3 T6,T7 S1

3.2.3 Metrics from LCSAJ

Calculation of Test Effectiveness Ratio (TER):

TER1 = Number of States covered by test data/total number of States

TER2 = Number of Transitions covered by the test data/total number of transitions

TER3 = Number of LCSAJs executed by the test data/total number of LCSAJs

Advantage:

When TER3 = 100% has been achieved it follows that TER2 = 100% and TER1 = 100% have also been achieved.

3.3 Decision table based test case generation method

Table 5 shows decision table derived from POS State diagram. The States constitute variables in the decision table. The

transitions constitute values for these variables.

 Table 5. Decision table derived from POS State diagram

3.3.1 Converting Decision table to test cases

Decision table can be converted to MC/DC test cases as shown in Table 6, using Pairwise testing tool (Allpairs tool) [38].

S1 S2 S3 S4

T1 T2 T4 T7

 T3+T2 T5

 T6

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 172

Table 6. Test cases generated from decision table

Test case S1 S2 S3 S4 Expected result

1 T1 T2 T4 T7 S2,S3,S1

2 T1 T3+T2 T5 T7 S2,S2,S3,S4,S1

3 T1 T2 T6 T7 S2,S3,S4,S1

4 ~T1 T3+T2 T4 ~T7 S2,S2,S3,S1

5 ~T1 T2 T5 ~T7 S2,S3,S4,S1

6 ~T1 T3+T2 T6 ~T7 S2,S2,S3,S4,S1

3.4 Automatic Generation of Test Cases

The detailed steps for generating test cases from State chart diagram are given in section 3.4.1 through 3.4.3.

3.4.1 Process Flow Diagram from State chart diagram

Figure 3 illustrates the steps involved in generating test cases automatically from State chart diagram.

Figure 3. Process steps to generate test cases from State chart.

3.4.2 Automatic generation of LCSAJ Test cases from State chart diagram

XMI file [11] is exported from corresponding State chart diagram in StarUML [6] tool environment. From XMI file,

States, incoming Transitions and outgoing Transitions are identified. Using Incidence matrix, Transition traversal table is

created as shown in Table 7. In this table, Transitions and their corresponding Start State and End State are tabulated.

Table 7. Transition travel table for POS CFG

Transition Start State End State

T1 S1 S2

T2 S2 S3

T3 S2 S2

T4 S3 S1

 T5 S3 S4

T6 S3 S4

T7 S4 S1

From Transition travel table, LCSAJ table is constructed. Start States and End States are directly taken from Transition

travel table to LCSAJ table. „Jump to‟ States are identified by searing End State in Start State column of Transition travel

table. „Jump to‟ State is other than Start and End States, in case of non-self transitions. In case of self transitions, „Jump

to‟ State is same as End State. If End State is Initial State, there is no „Jump to‟ State. LCSAJ table for POS State

diagram is automatically generated as shown in Table 8.

Table 8. Auto generated LCSAJ table from POS State diagram

Start state Finish State Jump to state Transitions

WaitingForSale EnteringItems WaitingForPayment makeNewSale,endSale

WaitingForSale EnteringItems EnteringItems makeNewSale,enterItem

EnteringItems WaitingForPayment WaitingForSale endSale,makeCashPayment

EnteringItems WaitingForPayment AuthorizingPayment endSale,makeCreditPayment

EnteringItems WaitingForPayment AuthorizingPayment endSale,makeChequePayment

AuthorizingPayment WaitingForSale WaitingForSale authorized

WaitingForPayment WaitingForSale WaitingForSale makeCashPayment

WaitingForPayment AuthorizingPayment WaitingForSale makeCreditPayment,authorized

WaitingForPayment AuthorizingPayment WaitingForSale makeChequePayment,authorized

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 173

From LCSAJ table, LCSAJ test cases are generated as shown in Table 9.

Table 9. Generated test cases from LCSAJ table

Test

Case ID

Pre Condition Description Expected result

TC1 WaitingForSale makeNewSale,endSale WaitingForPayment

TC2 WaitingForSale makeNewSale,enterItem EnteringItems

TC3 EnteringItems endSale,makeCashPayment WaitingForSale

TC4 EnteringItems endSale,makeCreditPayment AuthorizingPayment

TC5 EnteringItems endSale,makeChequePayment AuthorizingPayment

TC6 AuthorizingPayment Authorized WaitingForSale

TC7 WaitingForPayment makeCashPayment WaitingForSale

TC8 WaitingForPayment makeCreditPayment,authorized WaitingForSale

TC9 WaitingForPayment makeChequePayment,authorized WaitingForSale

The algorithm for generating LCSAJ test cases is shown in Figure 4.

Figure 4. Algorithm to generate LCSAJ test cases.

3.4.3 Automatic generation of MC/DC test cases from State chart diagram

Decision table is created using States and their corresponding outgoing Transitions. States constitute variables in the

decision table, and Transitions constitute values for each variable. Table 10 shows Decision table generated from POS

State diagram.

Table 10. Auto generated Decision table for POS

WaitingForSale Entering-Items WaitingForPayment

Authorizing

Payment

Make-NewSale endSale makeCash-Payment authorized

 enterItem+endSale makeCredit-Payment

 makeChequePayment

Using „All pairs‟ tool, MC/DC test cases are generated from the Decision table as shown in Table 11.

Table 11. Generated MC/DC test cases by „Allpairs‟ tool

TC

ID

Waiting

ForSale

Entering

Items

Waiting ForPayment Authorizing

Payment

Expected Result

1 makeNewSale endSale makeCashPayment authorized 1.EnteringItems

2.WaitingForPayment

3.WaitingForSale

4.WaitingForSale

2 makeNewSale enterItem makeCreditPayment authorized 1.EnteringItems

2.EnteringItems

3.AuthorizingPayment

4.WaitingForSale

Algorithm for automatic LCSAJ test case generation

1. Start State = Initial State

2. Push all outgoing Transitions to Stack.

3. If Stack is empty terminate algorithm.

4. If Stack is non-empty, pop one Transition. Find Start/End States for

this Transition using Transition traversal table

5. Search End State in Start State column of Transition traversal table

and find corresponding „Jump to‟ State and „Jump through‟

Transition.

6. If „Jump through‟ Transition is not self Transition, then „Jump to‟

State is other than End State. If it is self Transition, „Jump to‟ State

is same as End State. If End State is Initial State, then no „Jump to‟

State.

7. Start State = „Jump to‟ State

8. Repeat from Step 2.

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 174

3 makeNewSale endSale makeChequePayment authorized 1.EnteringItems

2.WaitingForPayment

3.AuthorizingPayment

4.WaitingForSale

4 ~makeNewSale enterItem makeCashPayment ~authorized 1.EnteringItems

2.EnteringItems

3.WaitingForSale

4.WaitingForSale

5 ~makeNewSale endSale makeCreditPayment ~authorized 1.EnteringItems

2.WaitingForPayment

3.AuthorizingPayment

4.WaitingForSale

6 ~makeNewSale enterItem makeChequePayment ~authorized 1.EnteringItems

2.EnteringItems

3.AuthorizingPayment

4.WaitingForSale

IV. COMPARISON WITH OTHER METHODS

There are others who have considered a State diagram as input for test case generation. An example can be seen in [28],

where test suites can be automatically generated from State charts. This is done by mapping State chart elements to the

STRIPS planning language. The application of the State of the art planning tool graph plan yields the different test cases

as solutions to a planning problem. This method has following limitations:

1. The expected system responses have to be added to the test sequence manually to yield complete test cases.

2. Test case coverage is not ensured.

3. Test cases are not optimized.

The proposed method has the following advantages:

1. Expected Results are automatically added to ensure completeness of test cases.

2. Test case coverage is ensured by LCSAJ algorithm.

3. Test cases are optimized by generating MC/DC test cases using Pairwise test approach.

There are several research projects [4][18][33] proposing concepts for UML based test tools. However, most of them

generate exhaustive test cases, which in turn significantly lower the chance of those concepts being accepted in industry

projects. The proposed method addresses generating Multiple Conditions/Decisions Coverage (MC/DC) test cases from

State diagram, which are optimized in number, at the same time ensuring 100% transition and State coverage. The usage

of „Allpairs‟ tool ensures reducing number of test cases being generated.

In Agile environment, it is recommended to use LCSAJ test cases during developmental stage and use MC/DC test cases

for regression testing, once software is stabilized.

V. EXPERIMENTAL RESULTS

The proposed approach is deployed in few applications and results are obtained. The following applications are

considered for experimentation:

a. Account system

b. Borrow book

c. Currency controller

d. Ice vending machine

e. Safe home system

f. Simple ATM (SATM)

g. Triangle program

h. Wiper controller

5.1 Description

The brief descriptions of all applications are given in the following section:

5.1.1 Account system

An Account system helps user to open „new‟ account. Once account is created user can do various transactions such as

balance checking, debit money, credit etc. If the balance is maintained less than 0, then the status is changed to

„overdrawn‟. If the account is not accessed for more than 5 years, then the status is changed to „locked‟. Also Account

system allows user to close the account. The State diagram of the Account system is shown in Figure A-1 and its

corresponding automatically generated LCSAJ and MC/DC test cases are given in Table A-1 and A-2 respectively in

Appendix A.

5.1.2 Borrow book

The Borrow book application allows user to search book in the database. If book is found in the database, user can

reserve the book in his name. The Borrow book application has login feature and checks authentication of the user. The

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 175

State diagram of the Borrow book is shown in Figure B-1 and its corresponding automatically generated LCSAJ and

MC/DC test cases are given in Table B-1 and B-2 respectively in Appendix B.

5.1.3 Currency converter

The Currency converter application allows user to convert currency from USD or Indian rupees to equivalent other

country currencies. It allows user to enter input value and select target country. It throws error, if either input value not

entered or target country is not selected. The State diagram of the Currency converter is shown in Figure C-1 and its

corresponding automatically generated LCSAJ and MC/DC test cases are given in Table C-1 and C-2 respectively in

Appendix C.

5.1.4 Ice cream vending machine

The Ice cream vending machine allows user to purchase ice creams automatically. It allows user to select different

flavour of ice creams such as Vanilla, Chocolate, Strawberry and Butterscotch etc. It calculates money based on selected

flavour and number of ice creams ordered. When user inserts money into the slot, it calculates balance amount and

returns back. The State diagram of the Ice vending machine is shown in Figure D-1 and its corresponding automatically

generated LCSAJ and MC/DC test cases are given in Table D-1 and D-2 respectively in Appendix D.

5.1.5 Safe home system

The Safe home system is a security system that helps user to monitor home. It alerts home owner in case of any intruder

entering home, through various mechanisms such as sending SMS, making emergency call, activating alarm, video

recording and blinking control panel. The State diagram of the Safe home system is shown in Figure E-1 and its

corresponding automatically generated LCSAJ and MC/DC test cases are given in Table E-1 and E-2 respectively in

Appendix E.

5.1.6 Simple ATM system

The Simple ATM system provides banking transactions such as withdraw money, deposit money, balance checking, print

mini statement etc. User requires a valid debit card and need to enter valid PIN number to avail banking services. The

State diagram of the Simple ATM system is shown in Figure F-1 and its corresponding automatically generated LCSAJ

and MC/DC test cases are given in Table F-1 and F-2 respectively in Appendix F.

5.1.7 Triangle program

The Triangle program displays triangle type such as Isosceles, Scalene, Equilateral based on the values of the sides a, b,

c. It displays an error message, in case of invalid entry. The State diagram of the Triangle program is shown in Figure G-

1 and its corresponding automatically generated LCSAJ and MC/DC test cases are given in Table G-1 and G-2

respectively in Appendix G.

5.1.8 Wiper controller

The Wiper controller allows user to set different wiper speed by changing position of lever and dial. The lever position

can be changed to off, inter, low and high. When lever position is set to inter, dial positions can be changed to 1, 2 and 3.

The State diagram of the Wiper controller is shown in Figure H-1 and its corresponding automatically generated LCSAJ

and MC/DC test cases are given in Table H-1 and H-2 respectively in Appendix H.

5.2 Summary

Table 12 shows summary of LCSAJ and MC/DC test cases derived from State diagrams of various applications. Column

B shows MC/DC test cases possible to derive from State diagram. Column C shows optimized number of test cases using

„Allpairs‟ tool.

Table 12. Summary of LCSAJ and MC/DC test cases

Project name LCSAJ Test

cases

(A)

MC/DC Test cases Total Test

cases

(A+C)
Before

optimization

(B)

After

optimization

(C)

Account system 12 112 28 40

Borrow book 7 4 4 11

Currency

converter

19 32 10 29

Ice vending

machine

11 8 6 17

Safe home 17 16 8 25

Simple ATM 22 32 10 32

Triangle

program

13 5 5 18

Wiper controller 16 10 10 26

5.3 Mutation analysis

The effectiveness of generated test cases for Triangle program is checked using fault injection technique called mutation

analysis [39][40]. Mutants are created from Triangle program after injecting errors in program to make program faulty. If

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 176

test case set is capable of capturing these errors, then mutants are killed by tests. The mutation analysis report after

creating mutants for Triangle program is shown in Table 13.

Totally 18 test cases failed because of 5 mutants. Mutants 3, 4, 5 each have 4 test cases failed out of 18 test cases

executed. This shows even though test cases are generated from design, any defect injected by developer is easily

captured by these cases.

Table 13. Mutation analysis for Triangle program test cases

Mutation

number

Change in code Number of test cases failed in

Mutants

Total

Fails per

Mutant Correct Buggy LCSAJ MC/DC

1 !(a>0 && b>0 &&

c>0)

!(a>0 || b>0 ||

c>0)

2 1 3

2 (a<b+c)&&(b<c+a)&&

(c<a+b)

(a<b+c)||(b<c+a)||

(c<a+b)

2 1 3

3 a==b && b==c &&

c==a

a==b || b==c ||

c==a

3 1 4

4 (a==b &&

b<>c)||(a==c &&

a<>b)||

(b==c && a<>c)

(a==b && b<>c)

&&(a==c &&

a<>b) &&(b==c

&& a<>c)

3 1 4

5 a<>b && b<>c &&

c<>a

a==b && b<>c

&& c<>a

3 1 4

Total fails category wise 13 5 18

VI. CONCLUSIONS

In this paper, a method has been proposed to generate functional test cases from LCSAJ table and MC/DC test cases from

Decision table. These two tables are automatically derived from UML Use case State chart diagram. As State chart

diagram is developed early in the development cycle, early generation of test cases is possible by the proposed method.

Besides, the proposed method is more prone to automation and reduces effort for writing exhaustive test cases.

The case study discussed here has shown that the proposed method can be used for applications in both PC based and in

embedded environments. As State chart diagram represent dynamic behaviour of the system, and generating MC/DC test

cases helps to test system behaviour under various input conditions. LCSAJ based test generation approach ensures 100%

test coverage.

REFERENCES

[1] P. Jorgensen, Software Testing: A Craftsman‟s Approach. CRC Press,2002.

[2] B. Beizer, Software Testing Techniques, 2nd ed. Van Nostrand Reinhold, 1990.

[3] Craig Larman, “Applying UML and patterns ", Addison Wesley, 2000.

[4] P. Samuel R. Mall A.K. Bothra, "Automatic test case generation using unified modeling language (UML) state

diagrams", The Institution of Engineering and Technology, 2008.

[5] Qaisar A. Malik, Dragos¸ Trus¸can, Johan Lilius,”Using UML Models and Formal Verification in Model-Based

Testing”, 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

2010.

[6] Star UML Tool. http://staruml.sourceforge.net/en/, Jul. 2011.

[7] Padma Iyenghar1, Elke Pulvermueller1, Clemens Westerkamp,”Towards Model-Based Test Automation for

Embedded Systems Using UML and UTP”, IEEE ETFA 2011.

[8] Object Constraint Language 2.0 is available from Object Mangement Group‟s web site http://www.omg.org/

[9] Vinaya Sawant, Dragos¸ Ketan Shah,”Automatic Generation of Test Cases from UML Models”, International

Conference on Technology Systems and Management 2011.

[10] G.J. Myers, C.sandler, T.Badgett, and T.M.Thomas. “The art of software Testing” , 2nd Edition.Wiley,2004

[11] OMG, “XML Metadata Interchange (XMI),v2.1”,2004.

[12] I. K. El-Far and J. A. Whittaker, “Model-based software testing,” Encyclopedia on Software Engineering, 2001.

[13] J. Offutt and A. Abdurazik, “Generating Tests from UML Specifications”, Second International Conference on

the Unified Modeling Language, Springer, New York 1999, pp.416-429

[14] W. M. Ho, J.-M. Jquel, A. L. Guennec, and F. Pennaneac‟h, “UMLAUT: An extendible UML transformation

framework,” in Automated Software Engineering, 1999, pp. 275–278. [Online]. Available:

citeseer.ist.psu.edu/ho99umlaut.html

[15] T. J´eron and P. Morel, “Test generation derived from model-checking,” in CAV ‟99: Proceedings of the 11th

International Conference on Computer Aided Verification. London, UK: Springer-Verlag, 1999, pp. 108–121.

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 177

[16] L. Bousquet, H. Martin, and J. Jzquel, “Conformance testing from uml specifications.” [Online]. Available:

citeseer.ist.psu.edu/683853.html

[17] KIM Y.G., HONG H.S., BAE D.H., ET AL.: „Test cases generation from UML state diagram‟, Proc. Softw.,

1999, 146, (4),pp. 187–192

[18] Ranjita Swain, Vikas Panthi and Durga Prasad Mohapatra, "Automatic Test case Generation From UML State

Chart Diagram", International Journal of Computer Applications (0975 – 8887) Volume 42– No.7, March 2012.

[19] Gnesi Stefania, Latella, Diego, and Massink Mieke. 2004. Formal test-case generation for UML statecharts,

Proceedings of the Ninth IEEE International Conference on Engineering Complex Computer Systems

Navigating Complexity in the e-Engineering Age, 2004, pp.75 – 84.

[20] Joanne M. Atlee and John Gannon, "State-Based Model Checking of Event-Driven System Requirements",

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 1, JANUARY 1993.

[21] John Joseph Chilenski and Steven P. Miller, "Applicability of modified conditioddecision coverage to software

testing", Software Engineering Journal, September 1994.

[22] Luqi, Hongji Yang and Xiaodong Zhang, "Constructing an Automated Testing Oracle: An Effort to Produce

Reliable Software", Computer Software and Applications Conference, 1994.

[23] Apfelbaum and Larry, " Automated functional test generation", AUTOTESTCON '95.

[24] Mark Stephenson, Tom Lynch and Steve Walters, "Using Advanced Tools to Automate the Design, Generation

and Execution of Formal Qualification Testing", AUTOTESTCON '96.

[25] Peter Savage, Steve Waiters and Mark Stephenson, "Automated Test Methodology for Operational Flight

Programs", Aerospace Conference, 1997. Proceedings.

[26] T. Savor and R.E. Seviora, "An Approach to Automatic Detection of Software Failures in Real-Time Systems",

Real-Time Technology and Applications Symposium, 1997. Proceedings.

[27] A. Jeerson Outt, Yiwei Xiong and Shaoying Liu, "Criteria for Generating Specication-based Tests", Proceedings

Fifth IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'99).

[28] Peter Fröhlich and Johannes Link, "Automated Test Case Generation from Dynamic Models", Proceedings

ECOOP, 2000.

[29] Diego Latella and Mieke Massink, "A Formal Testing Framework for UML Statechart Diagrams Behaviours:

From Theory to Automatic Verification", Proceedings of the 6th IEEE International Symposium on High

Assurance Systems Engineering, 2001.

[30] Philippe Chevalley and Pascale Thevenod-Fosse, "An Empirical Evaluation of Statistical Testing Designed from

UML State Diagrams: the Flight Guidance System Case Study", Proceedings of 12th International Symposium

on Software Reliability Engineering, 2001.

[31] Khaled El-Fakih, Anton Kolomeez, Svetlana Prokopenko and Nina Yevtushenko, "Extended Finite State

Machine Based Test Derivation Driven By User Defined Faults", International Conference on Software Testing,

Verification, and Validation, 2008.

[32] TSUN S. CHOW, "Testing Software Design Modeled by Finite-State Machines", IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. SE-4, NO. 3, MAY 1978.

[33] Xi Wang, Liang Guo and Huaikou Miao, "An Approach to Transforming UML Model to FSM Model for

Automatic Testing", International Conference on Computer Science and Software Engineering, 2008.

[34] Qurat-ul-ann Farooq, Muhammad Zohaib Z.Iqbal, Zafar I Malik and Zafar I Malik, "A Model-Based Regression

Testing Approach for Evolving Software Systems with Flexible Tool Support", 17th IEEE International

Conference and Workshops on Engineering of Computer-Based Systems, 2010.

[35] Reinhard Hametner, Dietmar Winkler, Thomas Östreicher, Natascha Surnic and Stefan Biffl, "Selecting UML

Models for Test-Driven Development along the Automation Systems Engineering Process", IEEE Conference

on Emerging Technologies and Factory Automation, 2010.

[36] Reinhard Hametner, Benjamin Kormann, Birgit Vogel-Heuser, Dietmar Winkler and Alois Zoitl, "Test Case

Generation Approach for Industrial Automation Systems", 5th International Conference on Automation,

Robotics and Applications, 2011.

[37] Manuj Aggarwal and Sangeeta Sabharwal, "Test Case Generation from UML State Machine Diagram: A

Survey", Third International Conference on Computer and Communication Technology, 2012.

[38] ALL PAIRS Tool. http://www.satisfice.com/tools.shtml.

[39] S. Kansomkeat and W. Rivepiboon, “Automated-generating test case using UML statechart diagrams”, Proc.

SAICSIT 2003, ACM 2003 pp. 296 – 300, 2003.

[40] Demillo, Lipton and Sayward, “Hints on Test Data Selection:Help for the Practicing Programmer”, IEEE, 1978.

APPENDIX

This section contains State diagrams of applications taken for experiment and their corresponding LCSAJ and

MC/DC test cases.

http://www.satisfice.com/tools.shtml

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 178

Appendix A: Account system

Figure A-1: State diagram for Account system

Table A-1. LCSAJ test cases from Account System State diagram

TestCase

ID

Pre

Condition Description

Expected

result

TC1 Open freeze,unfreeze Open

TC2 Open freeze,balance after frozen Frozen

TC3 Frozen unfreeze Open

TC4 Open debit so that b<0,credit so that b>0 Open

TC5 Open

debit so that b<0,debit after

overdrawn Overdrawn

TC6 Open

debit so that b<0,credit after

overdrawn Overdrawn

TC7 Open

debit so that b<0,balance after

overdrawn Overdrawn

TC8 Overdrawn credit so that b>0 Open

TC9 Open no transaction for 5years,settle Closed

TC10 Open

no transaction for 5years,balance

after inactive Inactive

TC11 Open close and b=0,balance after closed Closed

TC12 Inactive settle,balance after closed Closed

Table A-2. MC/DC test cases from Account System State diagram

TC

ID

Open Over drawn Frozen Inactive Closed Expected Result

1 credit after

open

credit so

that b>0

unfreeze settle balance

after closed

1.Open 2.Open 3.Open 4.Closed

5.Closed

2 debit after

open

debit after

overdrawn

balance

after

frozen

balance

after

inactive

balance

after closed

1.Open 2.Overdrawn 3.Frozen

4.Inactive 5.Closed

3 balance

after open

credit after

overdrawn

unfreeze balance

after

inactive

balance

after closed

1.Open 2.Overdrawn 3.Open

4.Inactive 5.Closed

4 freeze balance after

overdrawn

balance

after

frozen

settle balance

after closed

1.Frozen 2.Overdrawn 3.Frozen

4.Closed 5.Closed

5 debit so that

b<0

credit so

that b>0

balance

after

frozen

balance

after

inactive

balance

after closed

1.Overdrawn 2.Open 3.Frozen

4.Inactive 5.Closed

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 179

6 no

transaction

for 5years

debit after

overdrawn

unfreeze settle balance

after closed

1.Inactive 2.Overdrawn 3.Open

4.Closed 5.Closed

7 close and

b=0

credit after

overdrawn

balance

after

frozen

settle balance

after closed

1.Closed 2.Overdrawn 3.Frozen

4.Closed 5.Closed

8 credit after

open

balance after

overdrawn

unfreeze balance

after

inactive

~balance

after closed

1.Open 2.Overdrawn 3.Open

4.Inactive 5.Closed

9 debit after

open

credit so

that b>0

unfreeze settle ~balance

after closed

1.Open 2.Open 3.Open 4.Closed

5.Closed

10 balance

after open

debit after

overdrawn

balance

after

frozen

settle ~balance

after closed

1.Open 2.Overdrawn 3.Frozen

4.Closed 5.Closed

11 freeze credit after

overdrawn

unfreeze balance

after

inactive

~balance

after closed

1.Frozen 2.Overdrawn 3.Open

4.Inactive 5.Closed

12 debit so that

b<0

balance after

overdrawn

unfreeze settle ~balance

after closed

1.Overdrawn 2.Overdrawn 3.Open

4.Closed 5.Closed

13 no

transaction

for 5years

credit so

that b>0

balance

after

frozen

balance

after

inactive

~balance

after closed

1.Inactive 2.Open 3.Frozen

4.Inactive 5.Closed

14 close and

b=0

debit after

overdrawn

unfreeze balance

after

inactive

~balance

after closed

1.Closed 2.Overdrawn 3.Open

4.Inactive 5.Closed

15 credit after

open

credit after

overdrawn

balance

after

frozen

~settle ~balance

after closed

1.Open 2.Overdrawn 3.Frozen

4.Closed 5.Closed

16 debit after

open

balance after

overdrawn

~balance

after

frozen

~balance

after

inactive

~balance

after closed

1.Open 2.Overdrawn 3.Frozen

4.Inactive 5.Closed

17 balance

after open

credit so

that b>0

~unfreeze ~settle ~balance

after closed

1.Open 2.Open 3.Open 4.Closed

5.Closed

18 freeze debit after

overdrawn

~balance

after

frozen

~balance

after

inactive

~balance

after closed

1.Frozen 2.Overdrawn 3.Frozen

4.Inactive 5.Closed

19 debit so that

b<0

credit after

overdrawn

~unfreeze ~balance

after

inactive

~balance

after closed

1.Overdrawn 2.Overdrawn 3.Open

4.Inactive 5.Closed

20 no

transaction

for 5years

balance after

overdrawn

~balance

after

frozen

~settle ~balance

after closed

1.Inactive 2.Overdrawn 3.Frozen

4.Closed 5.Closed

21 close and

b=0

credit so

that b>0

~balance

after

frozen

~balance

after

inactive

~balance

after closed

1.Closed 2.Open 3.Frozen 4.Inactive

5.Closed

22 credit after

open

debit after

overdrawn

~balance

after

frozen

~balance

after

inactive

~balance

after closed

1.Open 2.Overdrawn 3.Frozen

4.Inactive 5.Closed

23 debit after

open

credit after

overdrawn

~unfreeze ~settle ~balance

after closed

1.Open 2.Overdrawn 3.Open

4.Closed 5.Closed

24 balance

after open

balance after

overdrawn

~balance

after

frozen

~balance

after

inactive

~balance

after closed

1.Open 2.Overdrawn 3.Frozen

4.Inactive 5.Closed

25 freeze credit so

that b>0

~unfreeze ~settle ~balance

after closed

1.Frozen 2.Open 3.Open 4.Closed

5.Closed

26 debit so that

b<0

debit after

overdrawn

~balance

after

frozen

~settle ~balance

after closed

1.Overdrawn 2.Overdrawn 3.Frozen

4.Closed 5.Closed

27 no

transaction

for 5years

credit after

overdrawn

~unfreeze ~balance

after

inactive

~balance

after closed

1.Inactive 2.Overdrawn 3.Open

4.Inactive 5.Closed

28 close and

b=0

balance after

overdrawn

~unfreeze ~settle ~balance

after closed

1.Closed 2.Overdrawn 3.Open

4.Closed 5.Closed

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 180

Appendix B: Borrow book

Figure B-1: State diagram for Borrow book

Table B-1. LCSAJ test cases from Borrow book State diagram

TestCaseID PreCondition Description Expected result

TC1

Search

screen Enter title,Select book Book details

TC2 Result list

Select book,Borrow with

login false Login screen

TC3 Result list

Select book,Borrow with

login true Book reserved

TC4 Book details

Borrow with login

false,Successful login Book reserved

TC5

Book

reserved Timeout Search screen

TC6 Login screen Successful login,Timeout Search screen

TC7 Book details

Borrow with login

true,Timeout Search screen

Table B-2. MC/DC test cases from Borrow book State diagram

TC

ID

Search

screen

Result

list

Book

details

Login

screen

Book

reserved

Expected Result

1 Enter title Select

book

Borrow

with login

false

Successful

login

Timeout 1.Result list 2.Book details

3.Login screen 4.Book reserved

5.Search screen

2 Enter title Select

book

Borrow

with login

true

Successful

login

Timeout 1.Result list 2.Book details

3.Book reserved 4.Book reserved

5.Search screen

Appendix C: Currency Converter

Figure C-1: State diagram for Currency converter

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 181

Table C-1. LCSAJ test cases from Currency Converter State diagram

TestCase

ID

Pre Condition Description Expected result

TC1 Idle Click Compute when both inputs

blank,Click OK on error msg

Idle

TC2 Missing US dollar and

country message

Click OK on error msg Idle

TC3 Idle Click on any country button as 1st

input,Click Compute when dollar not

selected

Missing US dollar

message

TC4 Idle Click on any country button as 1st

input,Enter US dollar amount as 2nd

input

Both inputs done

TC5 Idle Enter US dollar amount as 1st

input,Click Compute when country

not selected

Missing country

message

TC6 Idle Enter US dollar amount as 1st

input,Click on any country button as

2nd input

Both inputs done

TC7 Country selected Click Compute when dollar not

selected,Click OK on dollar missing

msg

Country selected

TC8 Missing US dollar

message

Click OK on dollar missing

msg,Click Compute when dollar not

selected

Missing US dollar

message

TC9 Missing US dollar

message

Click OK on dollar missing

msg,Enter US dollar amount as 2nd

input

Both inputs done

TC10 US dollar amount

entered

Click Compute when country not

selected,Click OK on country

missing msg

US dollar amount

entered

TC11 Missing country message Click OK on country missing

msg,Click Compute when country

not selected

Missing country

message

TC12 Missing country message Click OK on country missing

msg,Click on any country button as

2nd input

Both inputs done

TC13 Both inputs done Click Compute when both inputs

done,Click clear/quit

Idle

TC14 Country selected Enter US dollar amount as 2nd

input,Click Compute when both

inputs done

Equivalent amount

displayed

TC15 Country selected Enter US dollar amount as 2nd

input,Click Clear or Quit

Idle

TC16 US dollar amount

entered

Click on any country button as 2nd

input,Click Compute when both

inputs done

Equivalent amount

displayed

TC17 US dollar amount

entered

Click on any country button as 2nd

input,Click Clear or Quit

Idle

TC18 Both inputs done Click Clear or Quit Idle

TC19 Equivalent amount

displayed

Click clear/quit Idle

Table C-2. MC/DC test cases from Currency Converter State diagram

TC

ID

Idle Country

selected

US

dollar

amount

entered

Both

inputs

done

Equivalent

amount

displayed

Missing

US

dollar

message

Missing

country

message

Missing

US

dollar

and

country

message

Expected Result

1 Click

Compute

Click

Compute

Click

Compute

Click

Compute

Click

clear/quit

Click

OK on

Click

OK on

Click

OK on

1.Missing US dollar

and country message

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 182

when

both

inputs

blank

when

dollar not

selected

when

country

not

selected

when

both

inputs

done

dollar

missing

msg

country

missing

msg

error

msg

2.Missing US dollar

message 3.Missing

country message

4.Equivalent amount

displayed 5.Idle

6.Country selected

7.US dollar amount

entered 8.Idle

2 Click on

any

country

button as

1st input

Enter US

dollar

amount

as 2nd

input

Click on

any

country

button as

2nd

input

Click

Clear or

Quit

Click

clear/quit

Click

OK on

dollar

missing

msg

Click

OK on

country

missing

msg

Click

OK on

error

msg

1.Country selected

2.Both inputs done

3.Both inputs done

4.Idle 4.Idle 5.Idle

6.Country selected

7.US dollar amount

entered 8.Idle

3 Enter

US

dollar

amount

as 1st

input

Click

Compute

when

dollar not

selected

Click on

any

country

button as

2nd

input

Click

Compute

when

both

inputs

done

Click

clear/quit

Click

OK on

dollar

missing

msg

Click

OK on

country

missing

msg

Click

OK on

error

msg

1.US dollar amount

entered 2.Missing US

dollar message 3.Both

inputs done

4.Equivalent amount

displayed 5.Idle

6.Country selected

7.US dollar amount

entered 8.Idle

4 Click

Clear or

Quit

Enter US

dollar

amount

as 2nd

input

Click

Compute

when

country

not

selected

Click

Clear or

Quit

Click

clear/quit

Click

OK on

dollar

missing

msg

Click

OK on

country

missing

msg

Click

OK on

error

msg

1.Idle 1.Idle 2.Both

inputs done 3.Missing

country message

4.Idle 4.Idle 5.Idle

6.Country selected

7.US dollar amount

entered 8.Idle

5 Click

Compute

when

both

inputs

blank

Enter US

dollar

amount

as 2nd

input

Click on

any

country

button as

2nd

input

Click

Compute

when

both

inputs

done

~Click

clear/quit

~Click

OK on

dollar

missing

msg

~Click

OK on

country

missing

msg

~Click

OK on

error

msg

1.Missing US dollar

and country message

2.Both inputs done

3.Both inputs done

4.Equivalent amount

displayed 5.Idle

6.Country selected

7.US dollar amount

entered 8.Idle

6 Click on

any

country

button as

1st input

Click

Compute

when

dollar not

selected

Click

Compute

when

country

not

selected

Click

Clear or

Quit

~Click

clear/quit

~Click

OK on

dollar

missing

msg

~Click

OK on

country

missing

msg

~Click

OK on

error

msg

1.Country selected

2.Missing US dollar

message 3.Missing

country message

4.Idle 4.Idle 5.Idle

6.Country selected

7.US dollar amount

entered 8.Idle

7 Enter

US

dollar

amount

as 1st

input

Enter US

dollar

amount

as 2nd

input

Click

Compute

when

country

not

selected

Click

Clear or

Quit

~Click

clear/quit

~Click

OK on

dollar

missing

msg

~Click

OK on

country

missing

msg

~Click

OK on

error

msg

1.US dollar amount

entered 2.Both inputs

done 3.Missing

country message

4.Idle 4.Idle 5.Idle

6.Country selected

7.US dollar amount

entered 8.Idle

8 Click

Clear or

Quit

Click

Compute

when

dollar not

selected

Click on

any

country

button as

2nd

input

Click

Compute

when

both

inputs

done

~Click

clear/quit

~Click

OK on

dollar

missing

msg

~Click

OK on

country

missing

msg

~Click

OK on

error

msg

1.Idle 1.Idle 2.Missing

US dollar message

3.Both inputs done

4.Equivalent amount

displayed 5.Idle

6.Country selected

7.US dollar amount

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 183

entered 8.Idle

9 Click

Compute

when

both

inputs

blank

~Click

Compute

when

dollar not

selected

~Click

Compute

when

country

not

selected

Click

Clear or

Quit

~Click

clear/quit

~Click

OK on

dollar

missing

msg

~Click

OK on

country

missing

msg

~Click

OK on

error

msg

1.Missing US dollar

and country message

2.Missing US dollar

message 3.Missing

country message

4.Idle 4.Idle 5.Idle

6.Country selected

7.US dollar amount

entered 8.Idle

10 Click on

any

country

button as

1st input

~Enter

US dollar

amount

as 2nd

input

~Click

on any

country

button as

2nd

input

Click

Compute

when

both

inputs

done

~Click

clear/quit

~Click

OK on

dollar

missing

msg

~Click

OK on

country

missing

msg

~Click

OK on

error

msg

1.Country selected

2.Both inputs done

3.Both inputs done

4.Equivalent amount

displayed 5.Idle

6.Country selected

7.US dollar amount

entered 8.Idle

Appendix D: Ice cream Vending Machine

Figure D-1: State diagram for Ice cream vending machine

Table D-1. LCSAJ test cases from Ice cream Vending Machine State diagram

TestCase ID Pre Condition Description Expected result

TC1 Idle Ice selected,item selected <=15 Display amount

to be inserted

TC2 Idle Ice selected,item selected > 15 Display pricelist

TC3 Display pricelist item selected <=15,money

inserted

busy do

calculate

TC4 Display amount to be

inserted

money inserted,eject ice if balance

>= 0

Eject icecream

TC5 Display amount to be

inserted

money inserted,return money if

balance < 0

Return money

TC6 busy do calculate eject ice if balance >= 0,balance =

0

Idle

TC7 busy do calculate eject ice if balance >= 0,balance >

0

Return money

TC8 Eject icecream balance = 0 Idle

TC9 Eject icecream balance > 0,take money Idle

TC10 busy do calculate return money if balance < 0,take

money

Idle

TC11 Return money take money Idle

Table D-2. MC/DC test cases from Ice cream Vending Machine State diagram

TC

ID

Idle Display

pricelist

Display

amount

to be

inserted

busy do

calculate

Eject

icecream

Return

money

Expected Result

1 Ice

selected

item

selected

<=15

money

inserted

eject ice if

balance >=

0

balance

= 0

take

money

1.Display pricelist 2.Display

amount to be inserted 3.busy

do calculate 4.Eject icecream

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 184

5.Idle 6.Idle

2 Ice

selected

item

selected >

15

money

inserted

return

money if

balance < 0

balance

> 0

take

money

1.Display pricelist 2.Display

pricelist 3.busy do calculate

4.Return money 5.Return

money 6.Idle

3 ~Ice

selected

item

selected

<=15

~money

inserted

return

money if

balance < 0

balance

= 0

~take

money

1.Display pricelist 2.Display

amount to be inserted 3.busy

do calculate 4.Return money

5.Idle 6.Idle

4 ~Ice

selected

item

selected >

15

~money

inserted

eject ice if

balance >=

0

balance

> 0

~take

money

1.Display pricelist 2.Display

pricelist 3.busy do calculate

4.Eject icecream 5.Return

money 6.Idle

5 ~Ice

selected

item

selected

<=15

~money

inserted

~eject ice if

balance >=

0

balance

> 0

~take

money

1.Display pricelist 2.Display

amount to be inserted 3.busy

do calculate 4.Eject icecream

5.Return money 6.Idle

6 ~Ice

selected

item

selected >

15

~money

inserted

~return

money if

balance < 0

balance

= 0

~take

money

1.Display pricelist 2.Display

pricelist 3.busy do calculate

4.Return money 5.Idle 6.Idle

Appendix E: Safe home system

Figure E-1: State diagram for Safe home system

Table E-1. LCSAJ test cases from Safe home system State diagram

TestCase ID PreCondition Description Expected result

TC1 Resetting SystemOK,Reset Resetting

TC2 Resetting SystemOK,ActivatePW MonitoringSystemStatus

TC3 Idle Reset Resetting

TC4 Idle ActivatePW,DeactivatePW Idle

TC5 Idle ActivatePW,SensorTriggered

and start timer

ActingOnAlarm

TC6 MonitoringSystemStatus DeactivatePW,Reset Resetting

TC7 MonitoringSystemStatus DeactivatePW,ActivatePW MonitoringSystemStatus

TC8 ActingOnAlarm FalseAlarm,DeactivatePW Idle

TC9 ActingOnAlarm FalseAlarm,SensorTriggered

and start timer

ActingOnAlarm

TC10 ActingOnAlarm timeout,DeactivatePW Idle

TC11 ActingOnAlarm timeout,SensorTriggered and

start timer

ActingOnAlarm

TC12 MonitoringSystemStatus SensorTriggered and start

timer,FalseAlarm

MonitoringSystemStatus

TC13 MonitoringSystemStatus SensorTriggered and start MonitoringSystemStatus

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 185

timer,timeout

TC14 MonitoringSystemStatus SensorTriggered and start

timer,DeactivatePW

Idle

TC15 MonitoringSystemStatus SensorTriggered and start

timer,SensorTriggered and

restart timer

ActingOnAlarm

TC16 ActingOnAlarm DeactivatePW,Reset Resetting

TC17 ActingOnAlarm DeactivatePW,ActivatePW MonitoringSystemStatus

Table E-2. MC/DC test cases from Safe home system State diagram

TC

ID

Resetting Idle Acting On

Alarm

MonitoringS

ystem Status

Expected Result

1 System

OK

Reset FalseAlarm DeactivatePW 1.Idle 2.Resetting

3.MonitoringSystemStatus

4.Idle 4.Idle

2 System

OK

ActivatePW timeout SensorTriggered

and start timer

1.Idle

2.MonitoringSystemStatus

3.MonitoringSystemStatus

4.ActingOnAlarm

3 System

OK

Reset DeactivatePW SensorTriggered

and start timer

1.Idle 2.Resetting 3.Idle

3.Idle 4.ActingOnAlarm

4 System

OK

ActivatePW SensorTriggered

and restart timer

DeactivatePW 1.Idle

2.MonitoringSystemStatus

3.ActingOnAlarm 4.Idle

4.Idle

5 ~System

OK

ActivatePW FalseAlarm SensorTriggered

and start timer

1.Idle

2.MonitoringSystemStatus

3.MonitoringSystemStatus

4.ActingOnAlarm

6 ~System

OK

Reset timeout DeactivatePW 1.Idle 2.Resetting

3.MonitoringSystemStatus

4.Idle 4.Idle

7 ~System

OK

ActivatePW DeactivatePW DeactivatePW 1.Idle

2.MonitoringSystemStatus

3.Idle 3.Idle 4.Idle 4.Idle

8 ~System

OK

Reset SensorTriggered

and restart timer

SensorTriggered

and start timer

1.Idle 2.Resetting

3.ActingOnAlarm

4.ActingOnAlarm

Appendix F: Simple ATM system

Figure F-1: State diagram for Simple ATM system

Table F-1. LCSAJ test cases from Simple ATM System State diagram

TestCase ID Pre Condition Description Expected result

TC1 Idle Card OK,PIN OK and

display transaction type

Await transaction

selection

TC2 Idle Card OK, Press cancel or

PIN failed

Idle

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 186

TC3 Await PIN PIN OK and display

transaction type,Deposit

button

Deposit

TC4 Await PIN PIN OK and display

transaction type,Balance

button

Balance

TC5 Await PIN PIN OK and display

transaction

type,Withdraw button

Withdraw

TC6 Await PIN PIN OK and display

transaction type,Press

cancel

Idle

TC7 Await

transaction

selection

Deposit button,Take

deposit

Close session

TC8 Await

transaction

selection

Balance button,Display

balance

Close session

TC9 Await

transaction

selection

Withdraw

button,Dispense money

Close session

TC10 Balance Display balance,Another

session

Await transaction

selection

TC11 Balance Display balance,Goto idle Idle

TC12 Deposit Take deposit,Another

session

Await transaction

selection

TC13 Deposit Take deposit,Goto idle Idle

TC14 Withdraw Dispense money,Another

session

Await transaction

selection

TC15 Withdraw Dispense money,Goto

idle

Idle

TC16 Close session Another session,Deposit

button

Deposit

TC17 Close session Another session,Balance

button

Balance

TC18 Close session Another

session,Withdraw button

Withdraw

TC19 Close session Another session,Press

cancel

Idle

TC20 Close session Goto idle Idle

TC21 Await

transaction

selection

Press cancel Idle

TC22 Await PIN Press cancel or PIN

failed

Idle

Table F-2. MC/DC test cases from Simple ATM System State diagram

TC

ID

Idle Await PIN Await

transaction

selection

Balance Deposit With draw Close

session

Expected Result

1 Card

OK

PIN OK

and display

transaction

type

Deposit

button

Display

balance

Take

deposit

Dispense

money

Another

session

1.Await PIN

2.Await

transaction

selection

3.Deposit

4.Close session

5.Close session

6.Close session

7.Await

transaction

selection

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 187

2 Bad

card

 Press

cancel or

PIN failed

Balance

button

Display

balance

Take

deposit

Dispense

money

Goto

idle

1.Idle 2.Idle

3.Balance

4.Close session

5.Close session

6.Close session

7.Idle

3 Card

OK

 Press

cancel or

PIN failed

Withdraw

button

Display

balance

Take

deposit

Dispense

money

Another

session

1.Await PIN

2.Idle

3.Withdraw

4.Close session

5.Close session

6.Close session

7.Await

transaction

selection

4 Bad

card

PIN OK

and display

transaction

type

Press

cancel

Display

balance

Take

deposit

Dispense

money

Goto

idle

1.Idle 2.Await

transaction

selection 3.Idle

4.Close session

5.Close session

6.Close session

7.Idle

5 Bad

card

 Press

cancel or

PIN failed

Deposit

button

~Display

balance

~Take

deposit

~Dispense

money

Another

session

1.Idle 2.Idle

3.Deposit

4.Close session

5.Close session

6.Close session

7.Await

transaction

selection

6 Card

OK

PIN OK

and display

transaction

type

Balance

button

~Display

balance

~Take

deposit

~Dispense

money

Goto

idle

1.Await PIN

2.Await

transaction

selection

3.Balance

4.Close session

5.Close session

6.Close session

7.Idle

7 Bad

card

PIN OK

and display

transaction

type

Withdraw

button

~Display

balance

~Take

deposit

~Dispense

money

Goto

idle

1.Idle 2.Await

transaction

selection

3.Withdraw

4.Close session

5.Close session

6.Close session

7.Idle

8 Card

OK

 Press

cancel or

PIN failed

Press

cancel

~Display

balance

~Take

deposit

~Dispense

money

Another

session

1.Await PIN

2.Idle 3.Idle

4.Close session

5.Close session

6.Close session

7.Await

transaction

selection

9 ~Card

OK

~PIN OK

and display

transaction

type

Deposit

button

~Display

balance

~Take

deposit

~Dispense

money

Goto

idle

1.Await PIN

2.Await

transaction

selection

3.Deposit

4.Close session

5.Close session

6.Close session

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 188

7.Idle

10 ~Bad

card

~ Press

cancel or

PIN failed

Balance

button

~Display

balance

~Take

deposit

~Dispense

money

Another

session

1.Idle 2.Idle

3.Balance

4.Close session

5.Close session

6.Close session

7.Await

transaction

selection

Appendix G: Triangle program

Figure G-1: State diagram for Triangle program

Table G-1. LCSAJ test cases from Triangle program State diagram

TestCase ID Pre Condition Description Expected result

TC1 Enter

sides(a,b,c)

Validate sides,All sides are

equal

Display Equilateral

triangle

TC2 Enter

sides(a,b,c)

Validate sides,Two sides are

equal

Display isosceles

triangle

TC3 Enter

sides(a,b,c)

Validate sides,Unequal sides Display scalene

triangle

TC4 Enter

sides(a,b,c)

Validate sides,Invalid sides error

msg

Enter sides(a,b,c)

TC5 Enter

sides(a,b,c)

Validate sides,Invalid triangle

error msg

Enter sides(a,b,c)

TC6 Compute

triangle

All sides are equal,timeout for

equilateral

Enter sides(a,b,c)

TC7 Compute

triangle

Two sides are equal,timeout for

isosceles

Enter sides(a,b,c)

TC8 Compute

triangle

Unequal sides,timeout for

scalene

Enter sides(a,b,c)

TC9 Display

Equilateral

triangle

timeout for equilateral Enter sides(a,b,c)

TC10 Display

isosceles

triangle

timeout for isosceles Enter sides(a,b,c)

TC11 Display

scalene

triangle

timeout for scalene Enter sides(a,b,c)

TC12 Compute

triangle

Invalid sides error msg Enter sides(a,b,c)

TC13 Compute

triangle

Invalid triangle error msg Enter sides(a,b,c)

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 189

Table G-2. MC/DC test cases from Triangle program State diagram

TC

ID

Enter

sides

(a,b,c)

Compute

triangle

Display

Equilateral

triangle

Display

isosceles

triangle

Display

scalene

triangle

Expected Result

1 Validate

sides

All sides

are

equal

timeout for

equilateral

timeout

for

isosceles

timeout

for

scalene

1.Compute triangle

2.Display Equilateral

triangle 3.Enter sides(a,b,c)

4.Enter sides(a,b,c) 5.Enter

sides(a,b,c)

2 Validate

sides

Two

sides are

equal

timeout for

equilateral

timeout

for

isosceles

timeout

for

scalene

1.Compute triangle

2.Display isosceles triangle

3.Enter sides(a,b,c) 4.Enter

sides(a,b,c) 5.Enter

sides(a,b,c)

3 Validate

sides

Unequal

sides

timeout for

equilateral

timeout

for

isosceles

timeout

for

scalene

1.Compute triangle

2.Display scalene triangle

3.Enter sides(a,b,c) 4.Enter

sides(a,b,c) 5.Enter

sides(a,b,c)

4 Validate

sides

Invalid

sides

error

msg

timeout for

equilateral

timeout

for

isosceles

timeout

for

scalene

1.Compute triangle 2.Enter

sides(a,b,c) 3.Enter

sides(a,b,c) 4.Enter

sides(a,b,c) 5.Enter

sides(a,b,c)

5 Validate

sides

Invalid

triangle

error

msg

timeout for

equilateral

timeout

for

isosceles

timeout

for

scalene

1.Compute triangle 2.Enter

sides(a,b,c) 3.Enter

sides(a,b,c) 4.Enter

sides(a,b,c) 5.Enter

sides(a,b,c)

Appendix H: Wiper controller

Figure H-1: State diagram for Wiper controller

Table H-1. LCSAJ test cases from Wiper Controller State diagram

TestCase

ID

Pre

Condition

Description Expected

result

TC1 Off Set position to 1,Set position to 2 so that speed

increases to 30

Low

TC2 Off Set position to 1,Set position to 0 so that speed

decreases to 0

Off

TC3 Off Set position to 1,Set dial to 3 so that speed is set

to 12

Inter

TC4 Off Set position to 1,Set dial to 2 so that speed is set

to 6

Inter

TC5 Off Set position to 1,Set dial to 1 so that speed is set

to 4

Inter

TC6 Inter Set position to 2 so that speed increases to 30,Set

position to 3 so that speed increases to 60

High

TC7 Inter Set position to 2 so that speed increases to 30,Set

position to 1

Inter

TC8 Low Set position to 3 so that speed increases to 60,Set

position to 2 so that speed decreases to 30

Low

Anbunathan et al., International Journal of Advanced Research in Computer Science and Software Engineering 6(1),

January - 2016, pp. 169-190

© 2016, IJARCSSE All Rights Reserved Page | 190

TC9 High Set position to 2 so that speed decreases to

30,Set position to 3 so that speed increases to 60

High

TC10 High Set position to 2 so that speed decreases to

30,Set position to 1

Inter

TC11 Low Set position to 1,Set position to 2 so that speed

increases to 30

Low

TC12 Low Set position to 1,Set position to 0 so that speed

decreases to 0

Off

TC13 Low Set position to 1,Set dial to 3 so that speed is set

to 12

Inter

TC14 Low Set position to 1,Set dial to 2 so that speed is set

to 6

Inter

TC15 Low Set position to 1,Set dial to 1 so that speed is set

to 4

Inter

TC16 Inter Set position to 0 so that speed decreases to 0 Off

Table H-2. MC/DC test cases from Wiper Controller State diagram

TC ID Off Inter Low High Expected Result

1 Set position

to 1

Set position to 2 so

that speed increases

to 30

Set position to 3 so

that speed

increases to 60

Set position to 2 so

that speed decreases

to 30

1.Inter 1.Inter

2.Low 3.High

4.Low

2 Set position

to 1

Set position to 0 so

that speed decreases

to 0

Set position to 1 Set position to 2 so

that speed decreases

to 30

1.Inter 1.Inter

2.Off 3.Inter

3.Inter 4.Low

3 Set position

to 1

Set dial to 3 so that

speed is set to 12

Set position to 3 so

that speed

increases to 60

Set position to 2 so

that speed decreases

to 30

1.Inter 1.Inter

2.Inter 3.High

4.Low

4 Set position

to 1

Set dial to 2 so that

speed is set to 6

Set position to 1 Set position to 2 so

that speed decreases

to 30

1.Inter 1.Inter

2.Inter 3.Inter

3.Inter 4.Low

5 Set position

to 1

Set dial to 1 so that

speed is set to 4

Set position to 3 so

that speed

increases to 60

Set position to 2 so

that speed decreases

to 30

1.Inter 1.Inter

2.Inter 3.High

4.Low

6 ~Set position

to 1

Set position to 2 so

that speed increases

to 30

Set position to 1 ~Set position to 2 so

that speed decreases

to 30

1.Inter 1.Inter

2.Low 3.Inter

3.Inter 4.Low

7 ~Set position

to 1

Set position to 0 so

that speed decreases

to 0

Set position to 3 so

that speed

increases to 60

~Set position to 2 so

that speed decreases

to 30

1.Inter 1.Inter

2.Off 3.High

4.Low

8 ~Set position

to 1

Set dial to 3 so that

speed is set to 12

Set position to 1 ~Set position to 2 so

that speed decreases

to 30

1.Inter 1.Inter

2.Inter 3.Inter

3.Inter 4.Low

9 ~Set position

to 1

Set dial to 2 so that

speed is set to 6

Set position to 3 so

that speed

increases to 60

~Set position to 2 so

that speed decreases

to 30

1.Inter 1.Inter

2.Inter 3.High

4.Low

10 ~Set position

to 1

Set dial to 1 so that

speed is set to 4

Set position to 1 ~Set position to 2 so

that speed decreases

to 30

1.Inter 1.Inter

2.Inter 3.Inter

3.Inter 4.Low

