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Abstract— In the field of Image processing, 3D reconstruction is the process of capturing the shape and appearance 

of real objects. An efficient 3D reconstruction algorithm generally enhances the capabilities of existing 2D or 3D face 

recognition process. Many algorithms for 3D reconstruction have been developed so far such as Shape from Shading 

(SFS), 3D morphable model and Structure from Motion (SFM). In this paper a survey of above three approaches and 

a comparative analysis are presented. 
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I.     INTRODUCTION 

3D face model plays a vital role in face image processing. It is used in Face Recognition, Face animation, Face 

tracking etc. It has advantages over 2D model with regard to variation in pose and illumination. It is expensive as well as 

difficult to construct the 3D model of 2D images. Two main stream approaches are usually adopted to create a 3D facial 

model. One way is to use special equipment like a 3D scanner to capture 3D shape of human head. But due to high cost 

and limited applicability of 3D sensing devices, it is difficult to acquire sufficient and useful data as an alternative 3D 

face model of individual can be reconstructed using the techniques based on 2D images. Generally speaking an efficient 

3D reconstruction algorithm can greatly enhance the capabilities of existing 2D or 3D face recognition system. A 3D 

shape can be expressed in several ways, e.g., depth, surface normal and surface gradient or surface slant. The depth value 

can be consider either as the relative distance from the camera to the surface points or the relative surface height above 

the x-y plane. Many algorithms have been developed for 3D reconstruction such as Shape from Shading (SFS). The 3D 

morphable model, Structure from Motion (SFM) etc. Keeping this in mind, we are presenting a comparative study on the 

above mentioned techniques in the field of 3D reconstruction and face recognition. 

 

II.       LITERATURE  REVIEW 

A.   Shape from Shading 

 By exploring the shading information in an image, e.g., the intensity and its derivative, SFS deals with the recovery of 

shape based on some reflectance models, like Lambertian model which is a basic model, specular reflectance model and 

hybrid model, etc. 

The techniques to reconstruct shape are called shape-from-X techniques, where X can be shading, stereo, motion, 

texture, etc. Shape-from-shading (SFS) deals with the recovery of shape from a gradual variation of shading in the image. 

The first shape-from-shading (SFS) technique was developed by Horn in the early 1970s. To solve the SFS problem, it is 

important to study how the images are formed. A simple model of Image formation is the Lambertian model, in which 

the gray at a pixel in the image depends on the light source and the surface shape at each pixel in the image. However, 

real images do not always follow the Lambertian model. Even if we assume Lambertian reflectance and known light 

source direction, and if the brightness can be described as a function of surface shape and light source direction, the 

problem is still not simple. This is because if the surface shape is described in terms of the surface normal, we have a 

linear equation with three unknowns, and if the surface shape is described in terms of the surface gradient, we have a 

nonlinear equation with two unknowns. Therefore, finding a unique solution to SFS is difficult; it requires additional 

constraints.  

 Various SFS approaches can be divided into four groups: minimization approaches, propagation approaches, local 

approaches, and linear approaches. Minimization approaches obtain the solution by minimizing an energy function. In 

general, minimization approaches are more robust, while the other approaches are faster. All these approaches are 

proposed by many authors, presented below. 

1) Minimization Approaches 

One of the earlier minimization approaches, which recovered the surface gradient, was by Ikeuchi and Horn [1]. Since 

each surface point has two unknowns for the surface gradient and each pixel in the image provides one gray value, we 

have an underdetermined system. They introduced two constraints: the brightness constraint and the smoothness 

constraint to overcome the problem. The brightness constraint requires that the reconstructed shape produce the same 

brightness as the input image at each surface point, while the smoothness constraint ensures a smooth surface 

reconstruction. The shape was computed by minimizing an energy function which consists of the above two constraints. 
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To ensure a correct convergence, the shape at the occluding boundary was given for the initialization. Since the gradient 

at the occluding boundary has at least one infinite component, stereographic projection was used to transform the error 

function to a different space. 

Brooks and Horn [2] minimized the energy function, in terms of the surface normal. Frankot and Chellappa [3] 

enforced integrability in Brooks and Horn's algorithm in order to recover integrable surfaces                                  

(surfaces for which zxy = zyx). Surface slope estimates from the iterative scheme were expressed in terms of a linear 

combination of a finite set of orthogonal Fourier basis functions. The enforcement of integrability was done by projecting 

the nonintegrable surface slope estimates onto the nearest (in terms of distance) integrable surface slopes. This projection 

was fulfilled by finding the closest set of coefficients which satisfy integrability in the linear combination. Their results 

showed improvements in both accuracy and efficiency over Brooks and Horn's algorithm [2]. 

Later, Horn also [4] replaced the smoothness constraint in his approach with an integrability constraint. The major 

problem with Horn's method is its slow convergence.  

Szeliski [5] sped it up using a hierarchical basis preconditioned conjugate gradient descent algorithm. Based on the 

geometrical interpretation of Brooks and Horn's algorithm.  

Vega and Yang [6] applied heuristics to the variational approach in an attempt to improve the stability of Brooks and 

Horn's algorithm.  

Instead of the smoothness constraint, Zheng and Chellappa [7] introduced an intensity gradient constraint which 

specifies that the intensity gradients of the reconstructed image and the input image are close to each other in both the x 

and y directions. All of the above techniques use variational calculus. 

Leclerc and Bobick [8] solved directly for depth by using a discrete formulation and employing a conjugate gradient 

technique. The brightness constraint and smoothness constraint were applied to ensure convergence, and a stereo depth 

map was used as an initial estimate.  

Recently, Lee and Kuo [9] also proposed an approach to recover depth using the brightness and the smoothness 

constraint. They approximated surfaces by a union of triangular patches. This approach did not require the depth 

initialization. 

The approaches described so far deal with a single smooth surface. Malik and Maydan [41] developed a solution for 

piecewise smooth surfaces. They combined the line drawing and shading constraints in an energy function and recovered 

both surface normal and line labeling through the minimization of the energy function. 

2) Propagation Approaches 

Horn's characteristic strip method [10] is essentially a propagation method. A characteristic strip is a line in the image 

along which the surface depth and orientation can be computed if these quantities are known at the starting point of the 

line. Horn's method constructs initial surface curves around the neighborhoods of singular points (singular points are the 

points with maximum intensity) using a spherical approximation. The shape information is propagated simultaneously 

along the characteristic strips outward, assuming no crossover of adjacent strips. The direction of characteristic strips is 

identified as the direction of intensity gradients. In order to get a dense shape map, new strips have to be interpolated 

when neighboring strips are not close to each other.  

Rouy and Tourin [11] presented a solution to SFS based on Hamilton-Jacobi-Bellman equations and viscosity solutions 

theories in order to obtain a unique solution. A link between viscosity solutions and optimal control theories was given 

via dynamic programming. Moreover, conditions for the existence of both continuous and smooth solutions were 

provided.  

Oliensis [12] observed that the surface shape can be reconstructed from singular points instead of the occluding 

boundary. Based on this idea, Dupuis control problem and solved it using numerical methods.  

Bichsel and Pentland [13] simplified Dupuis and Oliensis's approach and proposed a minimum downhill approach for 

SFS which converged inless than 10 iterations.  

Similar to Horn's and Dupuis and Oliensis's approaches, Kimmel and Bruckstein [14] reconstructed the surface 

through layers of equal height contours from an initial closed curve. Their method applied techniques in differential 

geometry, fluid dynamics, and numerical analysis, which enabled the good recovery of non-smooth surfaces. The 

algorithm used a closed curve in the areas of singular points for initialization. 

3) Local Approaches 

Pentland's local approach [15] recovered shape information from the intensity and its first and second   derivatives. 

He used the assumption that the surface is locally spherical at each point. Under the same spherical assumption, Lee and 

Rosenfeld [16] computed the slant and tilt of the surface in the light source coordinate system using the first derivative of 

the intensity. 

4) Linear Approaches 

Pentland [17] used the linear approximation of the reflectance function in terms of the surface gradient and applied a 

Fourier transform to the linear function to get a closed form solution for the depth at each point. 

Tsai and Shah [18] applied the discrete approximation of the gradient first, and then employed the linear approximation 

of the reflectance function in terms of the depth directly. Their algorithm recovered the depth at each point using a Jacobi 

iterative scheme. 

 

B. 3D morphable 

A 3D morphable model is generally built from a set of 3D laser-scanned heads. As a crucial step, the scans are first 

registered in a dense point-by-point correspondence, using an optical-flow algorithm to reduce artifacts [19], [20]. 
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Statistical signal-processing techniques, such as principal component analysis (PCA), are then applied on the shape and 

texture features of these training samples to obtain a feature subspace [19]. The feature subspace, including the shape and 

texture feature vectors, can be regarded as a generic 3D face model. Given the model, a realistic human face can be 

represented as a convex combination of the shape and texture vectors as shown in fig-1. 

The estimate is achieved by fitting a statistical, morphable model of 3D faces to images. Blanz, Volker, and Thomas 

Vetter[20] presents a method for face recognition across variations in pose, ranging from frontal to profile views, and 

across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the 

algorithm simulates the process of image formation in 3D space, using computer graphics, and it estimates 3D shape and 

texture of faces from single images. The estimate is achieved by fitting a statistical, morphable model of 3D faces to 

images. [20] describe the construction of the morphable model, an algorithm to fit the model to images, and a framework 

for face identification.  

The goal of recognition algorithms is to separate the characteristics of a face, which are determined by the intrinsic 

shape and color (texture) of the facial surface, from the random conditions of image generation. 

Unlike pixel noise, these conditions may be described consistently across the entire image by a relatively small set of 

extrinsic parameters, such as camera and scene geometry, illumination direction and intensity. 

The algorithm [20] presented estimates all 3D scene parameters automatically, including head position and orientation, 

focal length of the camera, and illumination direction. This is achieved by a new initialization procedure that also 

increases robustness and reliability of the system considerably. The new initialization uses image coordinates of between 

six and eight feature points. Currently, most face recognition algorithms require either some initialization, or they are, 

unlike our system, restricted to front views or to faces that are cut out from images. 

After fitting the model, recognition can be based on model coefficients, which represent intrinsic shape and texture of 

faces, and are independent of the imaging conditions. For identification, all gallery images are analyzed by the fitting 

algorithm, and the shape and texture coefficients are stored as fig-1. Given a probe image, the fitting algorithm computes 

coefficients which are then compared with all gallery data in order to find the nearest neighbor. 

 

C. Structure from Motion 

Structure-from-motion (SFM) is a popular approach to recover the 3D shape of an object when multiple frames of an 

image sequence are available. Given a set of observations of 2D feature points, SFM can estimate the 3D structure of the 

feature points. Existing approaches to non-rigid structure from motion assume that the instantaneous 3D shape of a 

deforming object is a linear combination of basis shapes.  

Structure-from-Motion (SFM) algorithms have been extensively used to factorize the rigid and non-rigid 3D structure 

of objects from a set of 2D point tracks.  

Early work by Tomasi and Kanade in the 90's [21] proposed a factorization approach to recover the shape of rigid 

objects from an orthographic camera. 

Bregler et al. [22] described a factorization method for objects with non-rigid structure where any 3D shape 

configuration is modeled as a linear combination of basic shapes defining principal deformation modes. Assuming a 

weak perspective camera projection, [22] proposed a factorization method that exploits rank constraints on camera 

rotations to recover non-rigid 3D shape and motion. Recently several authors [23, 24, 25] have shown that rotation 

constraints for the pose are not enough to achieve reliable 3D reconstructions.  

Brand [23] proposed an alternative optimization method by introducing extra constraints and forcing the deformation 

to be as small as possible (relative to the mean shape).  

Xiao et al. [24] proposed adding a set of constraints on the shape basis to recover better 3D models. These constraints 

are based on the assumption that there are n image frames (where n is the number of basis shapes) in which the basis 

shapes are known to be independent.  

However, as it was later pointed out by Brand [25], the algorithm breaks down with noisy data or when n is not 

correctly estimated.       

Alternated least squares (ALS) [26, 27, 28] and expectation maximization (EM) [29, 30, 31] techniques have proven to 

be efficient methods to factorize the shape and motion components in SFM algorithms. These methods have been 

extended to incorporate missing data and to handle multiple view cases (where multiple projections of the same shape 

configuration are available). In presence of noisy data (e.g. inconsistencies in the tracked points or missing data), many 

SFM problems become ill-posed and Singular Value Decomposition (SVD) formulations are not effective. 

Torresani et al. [27] proposed a simple solution based on an alternated minimization scheme with promising results 

even when missing data is present. 

 Buchanan and Fitzgibbon [32, 33] presented a class of second-order optimizations which converged more reliably 

than alternation approaches in different experiments. However, they concluded that for many real SFM problems it is not 

sufficient to minimize the reprojection error in order to get meaningful results and pointed out the need to further analyze 

the use of prior information. In many scenarios estimating deformable 3D shapes is inherently under constrained, 

especially when using monocular 2D features, and standard SFM algorithms give degenerate solutions.  

Torresani et al. [30, 31] used an expectation maximization approach to solve the factorization problem, assuming 

Gaussian priors over the deformation parameters in order to avoid arbitrary variations.  

Del Bue et al. [34] enforced priors over the rigidity of some points to obtain reliable estimates of the object's rigid 

component. 
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 Olsen and Bartoli [35] imposed temporal smoothness and continuous variation in shape reconstructions. Similar in 

spirit to the approach presented in this paper, DelBue [36] introduced prior knowledge in the SFM algorithm in the form 

of previously known 3D shapes representing feasible configurations of the object, which at the end were used to 

regularize the rigid component of a deformable object. The formulation of this previous work is based on a factorization 

framework and prior information is incorporated into an intermediate solution but not the final metric reconstruction. 

Moreover, it is not clear how to incorporate missing data into the formulation. In their paper they extend existing 

approaches by incorporating prior information for morphable shape models into the final Euclidean linear basis 

reconstruction and provide experimental results in difficult scenarios (e.g. severe occlusions and reduced number of 

views).  

Ljaz Akhter,Yaser Sheikh,Sohaib Khan, and Takeo Kanade[37] present a dual approach to describe the evolving 3D 

structure in trajectory space by a linear combination of basis trajectories. They present dual relationship between the two 

approaches, showing that they both have equal power for representing 3D structure. They further show that the temporal 

smoothness in 3D trajectories alone can be used for recovering non-rigid structure from a moving camera. The principal 

advantage of expressing deforming 3D structure in trajectory space can be defined an object independent basis. This 

results in a significant reduction in unknowns and corresponding stability in estimation. The present the use of the 

Discrete Cosine Transform (DCT) as the object independent basis and empirically demonstrate that it approaches 

Principal Component Analysis (PCA) for natural motions. They reported on performance of the proposed method, 

quantitatively using motion capture data, and qualitatively on several video sequences exhibiting non-rigid motions, 

including piecewise rigid motion, partially non-rigid motion (such as a facial expressions), and highly non-rigid motion 

(such as a person walking or dancing). 

Jeff and Aleix [38] proposed an information theoretic approach to define the problem of structure from motion (SFM) 

as a blind source separation one. Given that for almost all practical joint densities of shape points, the marginal densities 

are non-Gaussian, they present how higher-order statistics can be used to provide improvements in shape estimates over 

the methods of factorization via Singular Value Decomposition (SVD), bundle adjustment and Bayesian approaches. 

Previous techniques have either explicitly or implicitly used only second-order statistics in models of shape or noise. A 

further advantage of viewing SFM as a blind source problem is that it easily allows for the inclusion of noise and shape 

models, resulting in Maximum Likelihood (ML) or Maximum a Posteriori (MAP) shape and motion estimates. A key 

result is that the blind source separation approach has the ability to recover the motion and shape matrices without the 

need to explicitly know the motion or shape pdf. We demonstrate that it suffices to know whether the pdf is sub-or super-

Gaussian (i.e., semi-parametric estimation) and derive a simple formulation to determine this from the data. Finally they 

presented extensive experimental results on synthetic and real tracked points in order to quantify the improvement 

obtained from this technique. 

Hei-Sheung and Kin-Man [39] proposed a new algorithm to derive the 3D human face from one or more of 2D face 

images under different poses. Based on the corresponding 2D feature points of the respective images, their respective 

poses and the depths of the feature points can be estimated based on measurements using the similarity transform. To 

accurately estimate the pose of and the 3D information about a human face, the genetic algorithm (GA) is applied. 

Presented algorithm does not require any prior knowledge of camera calibration, and has no limitation on the possible 

poses or the scale of the face images. It also provides a means to evaluate the accuracy of the constructed 3D face model 

based on the similarity transform of the 2D feature point sets. The proposed algorithm can also be extended to face 

recognition to alleviate the effect of pose variations. Experimental results show that our proposed algorithm can construct 

a 3D face structure reliably and efficiently. 

Zhan-Li Sun, Kin-Man Lam and Qing-Wei Gao[40] proposed the nonlinear least-squares (NLS) methods to reduce the 

computation of the method in [39], The author presented the process to   estimate the depth values of facial feature points, 

i.e., a sparse 3D face representation. In the NLS model, not only the pose parameters, but also the depth values of the 

facial feature points, are considered as the variables to be optimized. In addition, the symmetry information of face is 

utilized further in the proposed methods in order to alleviate the sensitivity to the training samples used. Usually one 

frontal view face image and one non-frontal-view face image are sufficient to reconstruct a 3D face model using the 

proposed algorithms. And for cases when multiple non-frontal-view face images are available, a model-integration 

approach is proposed in this paper to improve the depth estimation accuracy. For the sake of experiment they have used 

two popular databases such as FERET and Boshphorus. 

In the section of Structure from Motion,[38], [39], [40] provide information on  rigid structure from motion(RSFM) 

and rest are on Non rigid structure from motion(NRSFM). 

 

III. COMPARATIVE STUDY  

From the above survey, the comparative study is presented below which concern to their properties and demand. 
 

Table I Comparison Among Various 3d Reconstruction Methods 

Properties SFS 3D 

Morphabl

e 

SFM 

Representati

on 
Dense 3D Sparse 3D 
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IV.   CONCLUSIONS 

This paper presents a detailed survey on various 3D reconstruction methods in the field of image processing. In 

addition to that we have made a comparative analysis among those 3D reconstruction algorithms. One difference 

between the above three technique is that the information utilized is different. On the other hand, from the viewpoint of 

the number of data points, SFS and the3D morphable model are used to recover the whole surface of an object, i.e. a 

dense 3D representation, while SFM is generally adopted to estimate the depth values of some feature points, i.e. a sparse 

3D representation. Therefore, SFM has a far smaller storage requirement than SFS and the 3D morphable model, which 

is very helpful for real-time applications.  However, when they are applied to face recognition, SFS and the 3D 

morphable model generally have a better recognition performance than SFM because the information about more feature 

points is utilized. SFS shows poor and worse result on synthetic data and real images and shadow area is not recovered 

since shadow areas do not provide enough intensity information. But in case of 3D morphable the problematic part is the 

registration of the model to an image i.e. the fitting. SFM only perform when multiple frames of image sequence is 

available. The extensive bibliography in support of the different developments of 3d reconstruction algorithms research 

provided with the paper should be a great help to researchers in the feature. 
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