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Abstract— Modern data centres that operate under the cloud computing model are hosting a variety of applications 

ranging from those that run for a few seconds (e.g., serving requests of Web applications such as ecommerce and 

social network portals) to those that run for longer periods of time (e.g., simulations or large dataset processing) on 

shared hardware platforms. The need to manage multiple applications in a data centre creates the challenge of on-

demand resource provisioning and allocation in response to time-varying workloads. Normally, data centre resources 

are statically allocated to applications based on peak load characteristics in order to maintain isolation and provide 

perfor- mance guarantees. Until recently, high performance has been the sole concern in data centre deployments, 

and this demand has been fulfilled without paying much attention to energy consumption. Energy costs of powering a 

typical data centre doubles every five years. Because energy costs are increasing while availability dwindles, there is a 

need to shift focus from optimizing data centre resource management for pure performance alone to optimizing for 

energy efficiency while maintaining high service-level performance. 

 

Index Terms—Cloud Computing, Energy Characterization, Cloud Computing Simulation, Energy modeling in cloud 

 

I.      INTRODUCTION 

CLOUD computing environments are large-scale heterogeneous systems that are required to meet Quality of 

Service requirements demanded by consumers in Order to fulfil diverse business objectives. Such system Characteristics 

result in a diversity of Cloud efficiency in terms of user behaviour, task execution length and energy utilization patterns. 

In this context, Energy is defined as: ―The amount of power consumed to, or done by, a Client, workgroup, server, or 

system in a given time period‖ and consists of two components: tasks and users. Tasks are defined as the basic unit of 

computation Assigned or performed in the Cloud, and a user is defined as the actor responsible for creating and 

configuring the volume of tasks to be computed. In order to further enhance the effectiveness of managing Cloud 

Computing environments there are two critical requirements. The first is that such environments require extensive and 

continuous analyses in order to understand and quantify the characteristics of system components. The Second is the 

exploitation of the parameters derived from such analyses in order to develop simulation models which accurately reflect 

the operational conditions Analysis and simulation of Cloud tasks and users significantly benefits both providers and 

researchers, as it enables a more in-depth understanding of the entire system as well as offering a practical way to 

improve data centre functionality. 

For providers, it enables a method to enhance resource management mechanisms to effectively leverage the 

diversity of users and tasks to increase the productivity and QoS of their systems. For example, exploiting task 

heterogeneity to reduce performance interference of physical servers or analyzing the correlation of failures to power 

consumption. For researchers, simulation of Cloud workload enables evaluation of theoretical mechanisms supported by 

the characteristics of Cloud data centres. 

Ideally such simulation parameters are derived from the empirical analysis of large-scale production Cloud data 

centres. Failure to do so results in misleading assumptions about the degree of workload diversity that exists within the 

Cloud and the creation of unrealistic Simulation parameters. This consequently results in limitations to the usefulness and 

accuracy of simulation Parameters. However, deriving such analyses is challenging in two specific areas. The first and 

most critical problem is that there are few available data sources pertaining to large-scale production utility Clouds, due 

to business and confidentiality concerns. This is a particular challenge in academia, which relies on the very few publicly 

available Cloud tracelogs. The second problem is analysis and simulation of realistic workloads; this is due to the 

massive size and complexity of data that a typical production. Cloud can generate in terms of sheer volume of users and 

server events as well as recording resource utilization of tasks. 

Recently, there has been initial work from the analysis of limited Cloud traces from Google [2], [3] and Yahoo! 

[4] in an effort to provide mechanisms to analyze and characterize workload patterns. However, such efforts are 

predominately constrained to traces of short observational periods [5] and coarse-grain statistics [6] which are not 

sufficient to characterize the workload diversity of Cloud environments. In addition, there have been a number of 

approaches that analyze the diversity of workload by classifying tasks according to critical characteristics [7], [8], [9]. 
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However, none of these provide a comprehensive study of the diversity of users and tasks, or provide a model containing 

sufficient details about the model parameters obtained from the analyses in order to be of practical use to researchers. 

The objective of this paper is to present an in-depth Energy efficient analysis of cloud environment and its 

diversity in a large scale production Cloud computing data centre. Additionally, this work aims to provide a validated 

simulation model that includes parameters of tasks and users to be made available for other researchers to use. The 

analysis is conducted using the data from the second version of the Google Cloud tracelog [3], [10], which contains over 

25 million tasks, submitted by 930 users over the observational period of a month There are three core contributions 

within this work: 

1. An in-depth statistical analysis of the characteristics of energy diversity within a large-scale production Cloud. 

The analysis was performed over the entire tracelog time span as well as a number of observational periods to 

investigate patterns of diversity for both users and tasks within the system. 

2. An extensive analysis of distribution parameters derived from the energy analysis that can be applied to simulation 

tools by other researchers. 

3.  A comprehensive validation of the simulation model based on empirical and statistical methods. A significant 

contribution of the simulation model provided is that it does not just replay the data within the tracelog. Instead, it 

creates patterns that randomly fluctuate based on realistic parameters. This is important in order to emulate 

dynamic environments and to avoid just statically reproducing the behaviour from a specific period of time.   

 

A secondary contribution of this paper is presenting practical applications of the model obtained to identify sources of 

inefficiencies and enhance resource-management and energy usage in virtualized Cloud environments. This paper applies 

the methodology of analysis introduced in our previous approach [9], but is substantially different in a number of ways. 

First, this paper focuses specifically on a substantial analysis of Cloud diversity for tasks and users. Additionally, we 

analyze the entire tracelog time span and three additional observational periods, instead of just two days—which limited 

the original approach’s applicability, as it could potentially omit crucial behaviour within the overall Cloud environment. 

Furthermore, extensive analysis and parameter details are provided for user and task distributions. The remainder of this 

paper is organized as follows: Section 2 presents the background; Section 3 discusses related work; Section 4 details the 

methodology used. Section 5 presents the cluster and distribution analysis of task and user diversity. Section 6 presents 

the validation of the model simulation. Section 7 describes the improvements to the model based on the validation 

results. Section 8 discusses practical applications of the results obtained with in this paper. Sections 9 and 10 discuss the 

conclusions and further research directions of this work, respectively. 

 

II.     BACKGROUND 

2.1 Diversity Energy Patterns in Cloud 

According to the NIST [11], the Cloud computing model has the following five essential characteristics: on-

demand self service, resource pooling, broad network access, rapid elasticity and measured service. These characteristics 

create highly dynamic environments where customers from different contexts co-exist submitting workloads with diverse 

resource requirements at anytime. Workloads by them selves have properties or attributes that describe their behaviour. 

These attributes are normally expressed by the type and amount of resources consumed and other attributes that could 

dictate where a specific workload can or cannot be executed. For example, security requirements, geographical location, 

or specific hardware constraints such as processor architecture, number of cores or Ethernet speed among others 

described in [13]. As discussed in [14], as more and more customers adopt  

Cloud platforms to fulfil their IT requirements, Cloud providers need to be prepared to manage highly heterogeneous 

workloads that are served on the top of shared infrastructure. Workloads can be broadly classified according to the 

fundamental resources that they consume in terms of CPU, memory and storage-bound workloads [15]. Moreover, 

depending on the interaction with the end-users, they can also be classified as latency sensitive and batch workloads [16]. 

Common examples of workloads running in multi-tenant Cloud data centres according to [17] include Business 

Intelligence, scientific high-performance computing, gaming and simulation. 

 

2.2 Importance of Energy Models in Cloud 

Models abstract reality to aid researchers and providers in understanding system environments in order to develop or 

enhance such systems. Workload models enable a way to actually study Cloud environments and the effect of workload 

variability on the performance and productivity of the overall system. Specifically, they support researchers and 

providers in further understanding the actual status and conditions of the Cloud system and identify Key Performance 

Indicators (KPI) necessary to improve operational parameters. Such models can be used in a number of research domains 

including resource optimization, security, dependability and energy-efficiency. In order to produce realistic models, it is 

critical to derive their components and parameters from real-world production tracelogs. This leads to capturing the 

intrinsic diversity and dynamism of all co-existing components within the system as well as their interactions. Moreover, 

realistic workload models enable the simulation of Cloud environments whilst being able to control selected variables to 

study emergent system-wide behaviour, as well as support the estimation of accurate forecasting under dynamic system 

conditions to improve QoS offered to users. This supports the enhancement of Cloud Management Systems (CMSs) as it 

allows providers to experiment with hypothetical scenarios and assess their decisions as a result of changes within the 

Cloud environment(i.e., Capacity planning for increased system size, alteration of the workload scheduling algorithm, 

performance tradeoffs, and service pricing models). 
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III.      RELATED WORK 

The analysis of workload patterns for Cloud computing environments has been addressed previously [5], [6], 

[7], [8], [9], [18], [19], [20], [21], [22]. In this section, the most relevant approaches are described; their limitations and 

gaps are also discussed. Wang et al. [22] present an approach to characterize the workloads of Cloud computing Hadoop 

ecosystems, based on an analysis of the first version of the Google tracelog [2]. 

The main objective of this work is to obtain coarse-grain statistical data about jobs and tasks to classify them by 

duration. This characteristic limits the work’s application to the study of timing problems, and makes it unsuitable to 

analyze other Cloud computing issues related to resource usage patterns. Additionally, the analysis focuses on tasks and 

ignores the relationship with the users, a crucial component in Cloud workload as discussed previously. Zhang et al. [5] 

present a study to evaluate whether the mean values for task waiting time, CPU, Memory, and disk consumption are 

suitable to accurately represent the performance characteristics of real traces. The data used in their study is not publicly 

available and consists of the historical traces of six Google compute clusters spanning five days of operation. The 

evaluation conducted suggests that mean values of runtime task resource consumption is a promising way to describe 

overall task resource usage. However, it does not describe how the boundaries for task classification were made and how 

members behave. Mishra et al. [7] describe an approach to develop Cloud computing workload classifications based on 

task resource consumption patterns. The analyzed data consist of records from five Google clusters over four days. The 

proposed approach identifies workload characteristics, constructs the task classification, identifies the qualitative 

boundaries of each cluster and then reduces the number of clusters by merging adjacent clusters. This approach is useful 

to create the classification of tasks, but does not perform an analysis of the characteristics of the formed clusters in order 

to derive a detailed workload model. Finally, it is entirely focused on task modelling, neglecting user patterns. Kuvulya et 

al. [6] present a statistical analysis of MapReduce traces. The analysis is based on ten months of MapReduce logs from 

the M45 supercomputing cluster [4]. Here, the authors present a set of coarse-grain statistical characteristics of the data 

related to resource utilization, job patterns, and source of failures. This work provides a detailed- 

description of the distributions followed by the job completion times, but only provides very general information about 

the resource consumption and user behavioural patterns. Similar to [22], this characteristic limits the proposed approach 

mainly to the study of timing problems. Aggarwal et al. [8] describe an approach to characterize Hadoop jobs. The 

analysis is performed on a data set spanning 24 hours from one of Yahoo!’s production clusters comprising of 11,686 

jobs. This data set features metrics generated by the Hadoop framework. The main objective of this work is to group jobs 

with similar characteristics using clustering to analyze the resulting centroids. This work only focuses on the usage of the 

storage system, neglecting other critical resources such as CPU and Memory. Our previous work [9] provides an 

approach for characterizing Cloud energy based on user and task patterns using the second version of the Google 

tracelog; it presents coarse-grain statistical properties of the tracelog, and classifies tasks and users using statistical 

mechanisms to select the number of clusters. A concise analysis of the clusters is performed as well as best fit 

distributions for each. Finally, the derived analysis parameters are simulated and compared against the empirical data for 

validation. This work has a number of limitations; the analysis performed is confined to only two days as opposed to the 

entire tracelog time span, resulting in the potential omission of crucial system environment behaviour. Also, the cluster 

analysis and intra-cluster analysis do not contain sufficient detail to quantify the diversity of workload, instead presenting 

high-level observations. Furthermore, there is insufficient detail about the parameter distributions used; more detail is 

necessary in order for other researchers to simulate the workload obtained. Finally, the validation of the simulated model 

against that of the empirical data is based only on a visual match of the patterns from one single execution, and does not 

consider more rigorous statistical techniques. From the analysis of the related work it is clear that there are few available 

production tracelogs to analyze workload patterns in Cloud environments. Previous analyses present gaps that need to be 

addressed in order to achieve more realistic workload patterns. It is imperative to analyze large data samples as 

performed by [5], [6], [9]. Small operational time frames as those used in [7], [8], [22] could lead to unrealistic models. 

Second, analyses need to explore more than coarse-grain statistics and cluster centroids. To capture the patterns of 

clustered individuals it is also necessary to conduct analysis of the parameters and study the trends of each cluster 

characteristic. Although previously approaches offer some insights about workload characteristics, they do not provide a 

structured model which can be used for conducting simulations. Finally, the workload is always driven by the users, 

therefore realistic workload models must include user behavioural patterns linked to tasks. The approaches previously 

described completely focus on tasks, neglecting the impact of user behaviour on the overall environment workload.  

 

IV.     METHODOLOGY 

The methodology, analysis and subsequent simulation within this paper was applied to the second version of the 

Google Cloud tracelog [3], [10] which contains over 12,000 servers, 25 million tasks and 930 users over the period of a 

month. The tracelog includes detailed data such as submission patterns, resource requests of users and resource 

consumption of tasks within the system.The methodology is divided into two distinct steps: The first is defining the 

model that will be used for simulating the Cloud workload from the derived data set analysis. As stated previously, users 

are responsible for driving the volume and behaviour of tasks in terms of requested resources and the volume of task 

submission. Therefore, three important characteristics that define this behaviour within the tracelog are referred to as 

parameters that are fundamental to describe the user behaviour: the submission rate a, and requested amount of CPU b 

and Memory f. The submission rate is the quotient of dividing the number of submissions by the tracelog time span and 

is presented as task submissions per hour. Requested CPU and memory are represented as normalized resources 

requested by users taken directly from the task events log within the tracelog. 
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V.      ANALYSIS OF DIVERSITY 

This section presents the analysis of user and task characteristics within the tracelog after performing the k-

means clustering algorithm on the entire tracelog time span as described in Section 4. Specifically, we are interested in 

quantifying and characterizing the diversity of user and task behaviour that exists within the system environment. The 

analysis is divided into two sections; cluster analysis and distribution analysis. The cluster analysis discusses the 

characteristics and behaviour of the k-clusters and studies the statistical properties of each parameter within the clusters 

for users and tasks, including the Mean, Standard Deviation and Coefficient of Variation (Cv). The distribution analysis 

consists of analyzing the inner data distributions for each of the components within each cluster parameter for tasks and 

users. 

This required fitting the data to the closest theoretical distribution using a Goodness of Fit (GoF) test to obtain 

the parameters of their Probabilistic Distribution Functions (PDF). The data of each cluster is fitted to a parametric 

distribution by using the Anderson-Darling (AD) GoF statistical test. The theoretical distribution with the lowest 

ADvalue is selected to represent the data distribution of each cluster. The objective is to use the PDFs of the parameters 

in the workload model described in Equations (3) and (4). A number of assumptions for the distribution analysis can be 

found in [9]. The main alteration to the methodology in 

order to improve the accuracy of the model is to consider the amount of CPU and memory requested by users instead of 

the proportions of overestimation and underestimation of resources. This is because the overestimation is an 

approximated value, whilst the amount of requested resources 

is a factual value which produces more accurate results. 

Moreover, for both the cluster and distribution   analysis we have also investigated the variance of task and user 

clusters and parameters over a number of observational periods. The reason for this is to inspect patterns that exist within 

the data and to explore the degree of variance over the system lifespan. As a result, this analysis comprises of four 

observational periods; the entire month trace, Day 2, Day 18 and Day 26. The latter three observational periods were 

selected for two reasons: First, they represent observational periods of low task length, high submission rate and an 

average of these two parameters respectively. Second, the periods are temporally far apart, and provide insight into 

system diversity at different system states. 

 

 5.1 Cluster Analysis 

Fig. 1 illustrates the k-clusters partitioning that satisfies f (k) < 0.85 for users across observational periods. It can 

be observed from Fig. 1a that the majority of users across the entire month request similar portions of CPU and memory, 

and exhibit similar submission rates. Furthermore, there are three specific users that have a substantially 

 
Fig. 1. Clusterization for users (a) entire month (b) entire month (omitting outliers) (c) Day 2,  

(d) Day 18, and (e) Day 26. 

 

high submission rate and request larger amounts of CPU and memory as shown in clusters 2 (U2) and 3 (U3), 

respectively. When omitting these three users from the cluster analysis in Fig. 1b it is clearer to observe that clusters 

characteristics are similar across additional observational periods as demonstrated in Figs. 1c, 1d, and 1e, with a 

substantial amount of users exhibiting a similar submission rates and resource request patterns. Table 2 shows the 

statistical properties of each parameter for the defined clusters for the entire tracelog period. It is observable that users 

follow different resource utilization and submission patterns. For example, U2 contains 0.71 percent of the total user 

population and has an incredibly high submission rate in comparison to other clusters. Another example is that U3 has 

the highest average requested CPU and memory, but has the lowest submission rate, indicating this type of user 

infrequently submits more resource intensive tasks. 
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We observe that requested CPU and memory across most clusters exhibits low variance, with an average Cv of 

0.42 and 0.79 respectively (U3 requested memory appears to have higher variance due to the strong influence of three 

specific users discussed above). The parameter submission rate exhibits highly variant behaviour across all user clusters, 

with an average Cv of 1.97. U2 is the only user cluster whose Cv submission rate is less than 1, which is most likely due 

to the cluster population size of 3. There are three reasons for the above observations. First, as reported in previous works 

[9] the Cloud data centre environment is naturally heterogeneous in workload due to user behaviour. Second, requested 

resources by users are possibly a reflection of the application and system domain boundaries. For example, applications 

deployed or invoked within the Cloud environment have pre-defined resource requests to meet the demands of user QoS. 

Third, the submission rate is outside the boundaries of the system and is entirely driven by users; Such behaviour is 

reflective of the definition of Cloud computing, which provides the illusion of infinite resource to users [25], allowing 

them to submit as many tasks as required without conscious thought about system limitations. The k-clusters for tasks 

across all observational periods, and demonstrates that it was possible to define three clusters for all observational 

periods where f(k) < 0.85. It is observable that the cluster shapes are visually similar across all observational periods, 

with cluster 3 (T3) containing the lowest values for CPU, memory and length while T2 exhibits more variant behaviour. 

Moreover, T2 composes less than 2 percent of the total task population and T3 contains over 70 percent of the task 

population across all time periods as shown in Table 3. In addition, we observe that the proportions of tasks within the 

clusters stay relatively constant. In comparison to the heterogeneity of user clusters, task patterns appear to be more 

uniform across different observational periods. Table 4 presents the statistical properties of the task parameters length, 

CPU and Memory utilization for all clusters across the four observational periods. It is possible to make a more balanced 

comparison of task clusters over different time periods in contrast to user clusters due to the observed stability. Similar to 

the characteristic of user submission rate, we observe that task length is highly heterogeneous across all clusters and 

observational periods with an average Cv of 2.36, indicating high variation between values. This is due to the same 

reasons as for the variability that exists for user submission rates; task length is a parameter that is outside the boundaries 

of the system environment and is entirely dependent on the demands of the user (i.e., Users will execute tasks of different 

execution length to meet their QoS demands). CPU and memory are less variable due to application domain constraints 

imposed by the system environment, reflected by an average Cv value of 0.93 and 0.83 for CPU and memory utilization 

respectively. These results highlight two important findings. First, when quantifying the diversity of the Cloud 

environment, it appears that parameters that are outside the boundaries of the system environment introduce the highest 

level of heterogeneity. This is demonstrated by the parameters user submission rate and task execution length exhibiting 

highly variant behaviour in comparison to CPU and memory requests and utilization for users and tasks, respectively. 

Second, the diversity of workload imposed by these two parameters introduces potential challenges to workload 

prediction; for this case, where the parameters are highly variable and dynamic; the expiration time of historical data 

seems to be considerably shorter. Therefore, there exists the need for adaptive and evolving mechanisms that allow 

providers to obtain more accurate predictions. 

 

VI.     MODEL SIMULATION 

Data centres are not only expensive to maintain, they are also unfriendly to the environment. Carbon emissions 

due to data centres worldwide are now more than the emissions of both Argentina and the Netherlands [118]. High 

energy costs and huge carbon footprints are incurred due to the massive amount of electricity needed to power and cool 

the numerous servers hosted in these data centres. Cloud service providers need to adopt measures to ensure that their 

profit margins are not dramatically reduced due to high energy costs. According to Amazon’s estimate, the energy- 

related costs of its data centres amount to 42% of the total budget, which includes both direct power consumption and the 

cooling infrastructure amortized over a 15-year period. As a result, companies such as Google, Microsoft, and Yahoo! 

Are building large data centres in barren desert lands ur-rounding the Columbia River in the United States to exploit 

cheap hydro electric power. There is also increasing pressure from government’s world wide to reduce carbon footprints, 

which have a significant impact on climate change. To address these concerns, leading IT vendors have recently formed a 

global consortium, called The Green Grid, to promote energy efficiency for data centres and minimize their impact on the 

environment. Pike Research forecasts that data centre energy expenditures world wide will reduce from $23.3 billion in 

2010 to $16.0 billion in 2020, as well as causing a 28% reduction in green house gas (GHG) emissions from 2010 levels 

as a result of the adoption of the cloud computing model for delivering IT service. Lowering the energy usage of data 

centres is a challenging and complex issue because computing applications and data are growing so quickly that larger 

servers and disks are needed to process them fast enough within the required time period. This cloud computing is 

envisioned to achieve not only efficient processing and utilization of computing infrastructure but also minimize energy 

consumption.   This is essential for ensuring that the future growth of cloud computing is sustainable. Cloud computing, 

with increasingly pervasive front-end client devices such as iPhones interacting with back-end data centres, will cause an 

enormous escalation in energy usage. To address this problem, data centre resources need to be managed in an energy-

efficient manner to drive green cloud computing. In particular, cloud resources need to be allocated not only to satisfy 

QoS requirements specified by users via service-level agreements (SLAs) but also to reduce energy usage. This can be 

achieved by applying market-based utility models to accept user requests that can be fulfilled to enhance revenue along 

with energy-efficient utilization of cloud infrastructure. In order to characterize and analyse the performance of similar 

large-scale Cloud data centres under a projected set of operating conditions, we implemented the task and user model 

parameters described previously as an extension to the CloudSim framework [26], [27], [28], [29]. CloudSim is a Java 

based framework that enables the simulation of complete Cloud Computing environments [27]. It provides abstraction of 
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all the elements within the Cloud computing model and the interaction among them. However, as with any other 

simulation software, the quality and accuracy of the results entirely depends on how accurately the introduced parameters 

reflect the analysed system in reality. The following subsections describe the implemented workload generator and the 

conducted simulation validation. The model components and their relationship are formalized 

in Equations (1) to (6). 

U  = { u1,u2,u3,u4,.....,ui }               (1) 

T  = { t1,t2,t3,t4,.........,ti}                 (2) 

ui = {f(α),f(β),f(φ)}                          (3) 

ti   = {f(x),f(ɣ),f(pie)}                      (4) 

E(ui)=uiP(ui)                     (5) 

.

 
Fig. 2. Clusterization for tasks (a) entire month, (b) Day 2, (c) Day 18, and (d) Day 26. 

 

 
Fig. 3. CDF of user cluster U1 (a) CPU requested, (b) memory requested, and (c) submission rate. 

 

 
Fig. 4. CDF of task cluster T1 (a) CPU, (b) memory, and (c) submission rate. 

 

6.1 Workload and Environment Generator 

The workload and environment generator is composed of six modules: The Profile Manager, Data centre 

Generator, Customer Generator, Task Generator and Environment Coordinator. The user and task profiles describe 

respectively the user and task types identified during the clustering process and encapsulate the outlined behavioural 

patterns derived during the cluster and distribution analysis. The server profiles describe the capacities and characteristics 

of the data centre hosts according to the data within the trace log. These characteristics as well as the proportion of 

servers from each type are listed in Table 8. The profiles manager loads each element description making them available 

to the generators. The User Generator creates the CloudSim user instances and connects them with a specific profile 

determined by their associated probabilities as described in Equation (5). The Task Generator creates the CloudSim task 

instances and connects them with a specific task profile determined by the conditional probability in Equation (6). Each 

one of the user and task characteristics defined such as submission rate, length and resource consumption described in the 

model are obtained by sampling the inverse CDFs of the distributions in Equations (3) and (4). Finally, the Environment 

Coordinator controls the interactions between the three generators and the CloudSim framework that executes the 

simulation with the created instances. 

 

6.2 Simulation Configuration 

We have executed a model simulation of a data centre composed of 12,000 servers with 160 customers 

submitting tasks during 24 hours a total of five iterations. The user and task profiles are configured using the statistical 
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parameters derived for the entire month analysis as described in Tables 5 and 6. The profiles of the simulated servers are 

outlined from the tracelog as presented in Table 8 where the values of CPU and memory are normalized. The 

normalization is a scaling relative to the largest capacity of the resource on any server in the trace which is 1.0. 

 

6.3 Simulation Validation 

Model validation is defined as the ―substantiation that a computerized model with its domain of applicability 

possesses a satisfactory range of accuracy consistent with the intended application of the model‖ [3]. In the case of the 

historical data of trace-driven models where the analyst does not have access to the real system or to a different dataset 

sample from the same system, a common validation technique consists of using a portion of the available data to 

construct the model and the remaining data to determine whether the model behaves as the real system does. This is 

typically addressed by sampling the analyzed tracelog where both the input and the actual system response must be 

collected from the same period of time [31]. According to Sargent [30], there are two basic approaches in comparing the 

simulation model to the behaviour of the real system. The first consists of using graphs to empirically evaluate the 

outputs and the second involves the application of statistical hypothesis tests to make an objective decision. To validate 

our model simulation we use both techniques; the proportions of categorical data such as task, user and server types as 

well as tasks priorities are contrasted empirically by plotting comparative charts and evaluating the absolute error 

between the average output from the simulations and the data in the real system. Additionally we analyze the variability 

of results and their corresponding confidence interval (CI). On the other hand, continuous data such as the user and task 

resource request and consumption patterns are compared statistically using the Wilcox Mann-Whitney test (WMW) [32], 

[33]. WMW is one of the most powerful non-parametric tests for comparing two populations. 

According to Mauger [34], ―it is based on the test of the null hypothesis that the distributions of two populations, 

although unspecified, are equal, against the alternative hypothesis that the distributions have the same shape but are 

shifted, so the outcomes of one population tends to be larger than the other‖. It is commonly applied instead of the two-

sample t-test when the analyzed data does not follow a normal distribution as is the case of the outlined user and tasks 

patterns. Additionally, in order to verify the consistency of the WMW test, we have applied the Fisher’s Method [35]; a 

meta-analysis technique to combine p-values from different and independent tests which have the same null hypothesis. 

The objective is to verify whether the rejections are statistically significant given the variances reported, or are consistent 

with the results of the other simulations. 

 

6.4 Validation Results 

The results from our simulation experiments demonstrate the accuracy of the derived model to represent the 

operational characteristics of the workload within the Cloud computing data centre for the analyzed scenario. the 

proportion of components (users, tasks, task priorities and servers) created during the simulations which are contrasted 

against the observations from the real system. Comparing the average simulation outputs with the real values, it is 

possible to observe that simulated proportions of fundamental elements consistently match the proportions of the 

elements in the actual system. From the detailed results presented in Table 9, it can be observed that while the 

proportions of tasks do not significantly fluctuate, the proportions of users and servers across different simulation 

executions present a higher variability. This is mainly produced by a very small population of specific clusters. 

 

VII.     IMPROVEMENTS OF CPU CONSUMPTION PATTERNS 

This makes fitting such data sets with a single theoretical distribution unsuitable and creates significant gaps 

between the simulated and real data as observed. To improve the accuracy of our model, we applied ―multi-peak 

histogram analysis for region splitting‖ [38] and fitted the derived dataset sub-regions to new parametrical distributions. 

Essentially, the data is ranked and presented in a histogram, which is split based on the lowest points of the different 

valleys created by the multimodal distribution. To identify the peaks and valleys of a given multimodal data set, we 

smooth the histogram by applying the LOWESS [36] (Locally-Weighted Scatter plot Smoother) technique using the 

Minitab statistical package [37]. Then, the derived sub-regions are fitted to new parametrical distributions following the 

same process described in Section 5.2. Consequently, the CPU utilization patterns of the affected clusters comprise a 

combination of different distributions which are sampled by the model simulator based on the proportional size of the 

derived sub-regions. The distribution parameters and sizes of the obtained sub-regions The results of this process are 

illustrated in Fig. 9 where it can be observed that the split distributions improve the fitting between the simulated and real 

datasets. The p-values of the WMW test for both clusters are sufficiently statistically strong to support the equality of 

patterns. This reduces the error for execution time from 8.07 to 0.42 percent and from 5.91 to 0.13 percent for T2 and T3, 

respectively. 

 

VIII.     APPLICATION OF WORK 

The workload model presented in this paper enables researchers to simulate request and consumption patterns 

considering parameters and patterns statistically close to those observed from a production environment. This is critical 

in order to improve resources utilization, reduce energy waste and in general terms support the design of accurate 

forecast mechanisms under dynamic conditions to improve the QoS offered to customers. Specifically, we use the 

proposed model to support the design and evaluation of two energy-aware mechanisms for Cloud computing 

environments. The first is a resource over allocation mechanism that considers customers’ resource request patterns and 

the actual resource utilization imposed by their submitted tasks. Taking into account these parameters from the proposed 
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model it is possible to estimate the resource overestimation patterns. The main idea is to exploit the resource 

overestimation patterns of each user type in order to smartly over allocate resources to the physical servers. This reduces 

the waste produced by frequent overestimations and increases data centre availability. Consequently, it creates the 

opportunity to host additional Virtual Machines in the same computing infrastructure, improving its energy-efficiency 

[39].The second mechanism considers the relationship between Virtual Machine interference due to competition for 

resources and energy-efficiency. The core idea is to collocate different types of workloads based on the level of 

interference that they create, to reduce resultant overhead and thus improve the energy-efficiency of the data centre. By 

considering the resource consumption patterns of each task type we estimate the level of interference and energy 

efficiency decrement when they are co-located in a physical server. We classify incoming tasks based on their resource 

usage patterns, pre-select the hosting servers based on resources constraints, and make the final allocation decision based 

on the current servers’ performance interference level [40]. In both cases the proposed workload model and the 

parameters derived from the presented analysis are used to emulate the user and tasks patterns required by the energy-

aware algorithms. The model integrates the relationship between user demand and the actual resource usage—essential in 

both scenarios where the aim is to achieve a balance between resource request and utilization in order to reduce resource 

waste. Another important benefit of our approach is that as values of customer and task parameters are represented as 

proportions of resources requested or consumed, they areagnostic of underlying hardware characteristics. Therefore, the 

proposed model can be used to evaluate the performance of different data centre configurations under the same workload. 

Furthermore, the comprehensive analysis at cluster and intra-cluster level, the workload model that integrates user and 

tasks patterns and the applicability of the model independently of the hardware characteristics represent unique advances 

in comparison with the related work previously discussed in Section 3. Additionally, the proposed model supports the 

assessment of resource management mechanisms such as those recently presented in [41], [42] and [43] with parameters 

from a large-scale production Cloud environment. 

Fig. 5.  Cloud  Iaas ( Infrastructure-as-a-Service ) Provider in consumption of power 

 

IX.      CONCLUSIONS 

This paper presents an analysis that quantifies the diversity of Cloud workloads and derives a workload model 

from a large-scale production Cloud data centre. The presented analysis and model captures the characteristics and 

behavioural patterns of user and task variability across the entire system as well as different observational periods. The 

derived model is implemented using the CloudSim framework and extensively validated through empirical comparison 

and statistical tests. From the observations presented within this work and the results obtained from the simulations, a 

number of conclusions can be made. These are as follows: 
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1. Workload in Cloud data centres is driven not only by tasks characteristics but also by user behavioural patterns. 

Related approaches on workload analysis are focused on parameters such as the duration and the resources consumed by 

tasks. However, as observed from the presented analysis, in some scenarios specific types of users impose a strong 

influence on the overall Cloud workload. Therefore, comprehensive workload models must consider both tasks and users 

in order to reflect realistic conditions.  

2. User patterns tend to be significantly more diverse than task patterns across different observational periods. Depending 

on the type of service offered, providers can control the type of tasks and the environment in which they are running (i.e., 

SaaS and PaaS). This can create more ―stable‖ tasks patterns over the time. On the other hand, user patterns tend to 

change according to needs derived from their own business objectives which are completely out of the boundaries of 

Cloud providers. This creates new challenges on workload prediction mechanisms that need to evolve and adapt 

according to such dynamic characteristics.  

3. Describing Cloud analyses is an important first step, but providing the parameters and characteristics derived from 

these analyses is critical. This supports the development and validation of simulation models as presented in this work. 

Such simulations can support the evaluation of new operational policies, new system designs, and support the decision-

making process as result of changes in the Cloud environment. 

4. Workload models can be exploited to improve diverse and critical operational parameters. This paper has presented 

two examples of how the derived model can be used to improve performance and energy efficiency by exploiting the 

diversity of users and tasks. In addition, the workload model can be used to improve parameters such as security, 

dependability, and economics. 

 

X.     FUTURE WORK 

Future research directions includes extending the model to include tasks constraints based on server 

characteristics; this will allows us to analyze the impact of hardware heterogeneity on workload behaviour. Other 

extensions include analyzing the workload from the jobs perspective specifically modelling the behaviour and 

relationship of users and submitted jobs, accurately emulating and analyzing workload energy consumption and 

reliability enabling further research into energy-efficiency, resource optimization and failure-analysis in the Cloud 

environment. Finally, it is important to enable a collaboration link with the CloudSim group in order to integrate the 

proposed workload generator as an add-in of the current framework implementation allowing it to be made publicly 

available. 
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