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Abstract— Data Mining is the field where useful information is retrieved from raw data. Tremendous data is 

generated daily due to social networking sites or online internet data. Processing of this huge data is tedious task. 

Various shared and distributed architectures are used to process data. We used combination of CPU and GPU to 

achieve significant speedup for K-Means algorithm. GPU (Graphics Processing Unit) is shared memory low cost 

architecture used to run parallel applications with CUDA (Compute Unified Device Architecture). Implementation of 

K-Means on hybrid architecture is more energy efficient and cost effective. 
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I.    INTRODUCTION 

Graphics processor unit (GPUs) becomes attractive because they offer extensive resources like massive parallelism and 

high memory bandwidth even for general-purpose computations, including support for both single- and double-precision 

IEEE floating point arithmetic. In fact, GPU contain hundreds of processing elements in “manycore” processor 

architecture. Some applications are preferred to use general purpose computing on GPUs over conventional multicore 

CPUs. As GPUs and multicore CPUs emerges as advanced parallel computing platforms have come to dominate the 

market [7]. It’s important to revisit parallel programming models and find the best balance between programming model 

according to convenience and hardware implementation cost. While performance is key factor which gives inspiration to 

our work, efficiency is another leading driver. Data center consumes enormous amount of energy during processing task. 

 Data Center consists of rack servers occupied by computers with inter-node communications addition to present 

spatial, performance with backup electrical generation overhead. Significant energy savings can be obtained by 

transferring this processing from power-hungry CPUs to multiple powers efficient GPUs on a single node. CUDA 

technology gives speedup for computationally intensive general purpose applications with the tremendous processing 

power of the GPUs through a C, C++ and FORTRAN like programming interface [6]. 

Data mining is study to discover interesting, meaningful, and understandable information from massive raw data sets 

[10]. In recent years, it has become a hot research domain due to important application areas such as e-commerce, business 

intelligence, scientific simulation, customer relationship management, WWW, bioinformatics, and many more. However, 

due to architectural style of GPUs, there are certain limits in coding strategies to gain significant speedups [11]. 

The paper provides efficient CUDA implementation along with hybrid implementation of K-Means algorithm. Section 

II briefly describes different parallel programming frameworks and basic K-Means algorithm. Section III briefly 

describes both the implementation of K-Means on GPUs. Section IV shows how both implementations gives significant 

speedup with results. Finally, Section V concluded with the findings of this work and future scope for improvement. 

 

II.     BACKGROUND REVIEW 

A. CUDA Programming 

CUDA is an extension to simple programming languages, based on a few easily-learned abstractions for parallel 

programming and a few corresponding additions to programming language syntax. CUDA run in a hierarchy of grid, block 

and threads that can run on the coprocessor as a device with large number of threads. The grid launch as a CUDA kernel 

which contains thousands of thread mapped as parallel tasks in an application. The parallel threads share memory and 

synchronize threads at block level using synchronization API. Data is processed by GPU after coping from CPU memory 

to graphics board’s memory with memory copy API’s of CUDA. This Data transfer is asynchronous and takes place 

concurrently with several memory copies [1].  

Once copied, data on the GPU is not change unless it is de-allocated or overwritten and available for subsequent 

kernels. The GPU is composed of multiple streaming multiprocessors ideally suited for massively data-parallel 

computations. The GPU executed multiple blocks composed of multiple threads on set of multiprocessors in parallel. 

CUDA works in SIMD (Single Instruction Multiple Data) i.e. threads are grouped into thread blocks and all threads 

execute the same instruction with different data in parallel. Within one block, threads can be synchronized at any instance 

of execution. Threads within a block does not execute in order.  

Blocks are grouped into a grid. Within grid synchronization and communication among blocks is not possible. Blocks 

and threads can be organized in one, two and three dimensions. A thread is identified with an id showing its position in the 
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block similarly a block is also identified with id showing its position within a grid. GPU contains various kinds of 

memory. All GPU threads have access to these memories. Each thread has very fast private local registers and local 

memory. Each block contains local shared memory which shared by all the threads within block [4].  

Registers, local memory and shared memory are fast but and are limited resources. Threads also access general purpose 

device memory or global memory. Global memory is huge but slowest memory present in GPU. Addresses in memory 

accessed by multiple threads in global memory simultaneously should be arranged so that memory access can be 

continuous called as coalesced memory access. This is often referred to as memory coalescing. Occupancy defines at 

execution point how many threads within blocks are actually running in parallel.  

Efficient use of coalescing memory access and occupancy properties reduces execution time of an application. As 

shared memory and registers are limited resources, it is mandatory to allow run as many blocks and threads in parallel by 

optimizing the usage of shared memory and registers. The CUDA SDK (Software Development Kit) comes with tools 

that fully integrate with various C++ compilers. Code for the GPU is written in a subset of C, C++, and FORTRAN like 

languages with some extensions and can coexist in the same source file. The host code is containing configuration 

settings for blocks and threads executing data to the GPU. Device code is debugging in an emulation environment. 

Emulation environment runs the kernel on the CPU in heavyweight threads [4]. 
 

B. OpenMP Programming 

Open Multi-Processing (OpenMP) is shared memory architecture which provides a multithreaded capacity to the 

multiprocessor CPUs. Loop can be parallelized easily by invoking OpenMP directives and subroutine calls from OpenMP 

thread libraries. In this way, the threads can access data independently for processing and performing assigned tasks. 

Threads can share data from local shared memory during iterations of loop [3]. 

OpenMP is a fork-join model for shared memory parallelism. The basic idea behind OpenMP is SIMD for data-shared 

parallel execution. It consists of a set of compiler directives and subroutines callable from runtime library routines also 

environment variables extending to FORTRAN, C and C++ like programming languages. OpenMP is portable and 

scalable across shared memory architecture. The execution unit of OpenMP is threads executed by workers. Every thread 

can access a variable through shared cache or RAM. The OpenMP is an API (Application Programming Interface) that 

supports multi-processing programming on multi-platform shared memory architecture [3]. 
 

C. K-Means Algorithm 

K-Means is a most commonly used clustering algorithm in data mining. Clustering is a means of distributing n data 

points into k clusters where two clusters not share common one data point. Each cluster has maximal similarity between 

data points included in cluster. Union of all clusters contains all n points. The algorithm assigns each data point to the 

cluster based on Euclidean distance between data point and centroid of cluster. The centroid is the average of all the data 

points in the cluster [6]. The algorithm steps are: 

 Choose the number of clusters, k. 

 Randomly generate k clusters and determine the cluster centroids, or directly generate k random points as cluster 

centroids. 

 Assign each point to the nearest cluster centroid. 

 Re-compute the new cluster centroid. 

 Repeat the two previous steps until some convergence criterion is met. 
 

The result of this algorithm changes with every run. Results depend on initial random assignments of cluster centroids. 

Usually the convergence criteria is that assignments has not change between clusters in a iteration. If the initial cluster 

assignments are chosen heuristically around the final point then one can expect convergence to correct values. The first 

and second steps of the algorithm take Θ (k) time, while the third step takes Θ (nk) to complete. Finally, the fourth step 

takes order of Θ (n + k) execution time. In a typical application n > k, so the execution time of the algorithm is bound by 

the third step. This observation guided us to concentrate our parallelization efforts on the third step of the k-means 

algorithm [6]. 
 

III.     PARALLEL IMPLEMENTATION 

A. CUDA Implementation 

K-means CUDA implementation has the following four stages: 

K-means CUDA implementation has the following four stages: 

1. Compute new centroids (except at first iteration) 

2. Assign data points to clusters 

3. (Optional) Sort data points according to assignments by: 

a. A complete sorting step if more than half of all data points are unsorted, or 

b. Updating a previous sorting operation 

4. Compute score, or break at maximum iteration 
 

The functions have computational complexity Ο (K*D*N) (stage 2), and O ((K+D)*N) (stages 1 and 4). Then, optional 

sorting or updating in stage 3 reduces this to O (D*N) for stages 1 and 4. Also, sorting stage fulfills occupancy property 

which ensures that all threads within a warp are equally occupied, gives 32-fold speedup when compared to processing 

unsorted data. We have summarized our K-Means CUDA implementation strategy as a flowchart in Fig. 1 [2]. 
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Centroids computed by averaging all data points assigned to each cluster. Before sorting all assignment of N data 

points in all K clusters have to be checked. D is the number of attributes for every data point has to add it to the average. K 

blocks of TPB (Thread per Block) threads are assigned as K centroids of clusters. One data point has processed by one 

thread in consecutive segments of TPB size. Moving along the array, all the data points are covered in (N/TPB) iterations. 

Such a way each cluster used the number of threads is larger by a factor of TPB and for small K a high level of parallelism 

is achieved. Data points are stored in column-major order and therefore transfers of data point coordinates of TPB data 

points from global to shared memory are coalesced. 

 
Fig. 1 Flowchart of K-Means CUDA implementation 

 
Assigning all data points to K clusters requires checking each data point with all K centroids. This is done in (N/TPB) 

iterations. Centroids are stored in row major order, first min (TPB, D) coordinates of the first centroid are copied from 

global to shared memory. Hence, these reads are coalesced. For each dimension the distance is calculated between a data 

point and the centroid by Euclidean distance method. Upon completion each thread keeps track of the closest centroid. The 

TPB threads write the final assignments to membership array in global memory (coalesced) [9]. 

The score is convergence criteria computed by summing all distances between data points and their respective 

centroids. K blocks of threads are used. During the score computation, we do not keep track of number of elements, but 

compute distances between centroids and their respective assigned data points. These distances are computed with 
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Euclidean distance as in the assignment stage and summed up in TPB shared memory. One partial score per block is stored 

to global memory. Those K values are summed up by the host with a negligible overhead. With this implementation any 

number of data points with any number of dimensions can be processed with fully coalesced accesses [5]. 

In sorting data set represented as a key-value pairs by cluster assignment and a D-dimensional vector. Sorting is just 

placing N data points into K bins in O (D*N) time and O (D*N) space. At first count the assignments by traversing the 

membership array in global memory with K blocks of TPB threads each. Each of the K blocks checks for all assignments 

in K cluster. Each block initializes shared-memory integer array with zero of size TPB. Each thread reads one membership 

from global memory and increments shared memory counter by one if that data point present in that cluster K. After 

traversal we got the total number of element present in that cluster K which gives us the segment size that we have to 

reserve in the global memory for storing sorted array of data points for that cluster [2].  

The next step is determining K buffer offsets with K segment sizes, which we store in global memory. The CPU 

determines offsets of each block for sorted data within the buffer array, by storing intermediate result of a running sum. 

This step takes order of O (K*N) time. These offsets are used as input for K thread blocks. In next step all the wrong 

assignments are moved to buffer. Finally all threads within the block save with single coalesced global memory.  

An update step is more efficient than sorting step when number of reassignments between clusters is dropped i.e. 

significant portion of the data remains sorted. Updating step used in place of sorting, as very few data has to be moved 

during updating. At first we have to count the reassigned data points for each cluster, i.e., data points for which the new 

cluster is not equal to old cluster. Segment sizes of this cluster for the data are updated by subtracting this reassigned 

count. This is done by K blocks of threads of TPB threads each in (SK/TPB) iterations, where SK is the segment size of 

cluster K.  

After counting reassigned data, we know the size of K segments need to be reserved for temporarily store those data 

points. K offsets for the buffer segments are determined by updating segment sizes in the data array. It is sufficient to 

move the misassigned data points to the buffer, instead of moving all the data points. K blocks have starting position of its 

buffer offset and traverses with TPB threads to its assigned data segment. During collecting new assignments from buffer 

all K blocks of threads traverse in the buffer and increases data segment sizes by the number of reassigned data points to 

them. Hence we obtain segment sizes for the new, sorted data array. Next step is to update data set offsets by the final 

segment offsets of the data points for the current iteration is computed. The new segment boundaries are updated relative 

to the old ones and therefore previously occupied data from other clusters may be overlapping with segments. This overlap 

region may contain wrongly assigned data. We have to traverse membership array to find wrongly assigned data points in 

new data segments also compute final updated buffer segments. Count wrong assignments P` in offsets is done with new 

data offsets using the same operation as for counting reassignments [2].  

K new buffer offsets are determined from counted reassignment. These new buffer segments are larger than those 

computed in previously because they may contain data from adjacent segments in addition of misassigned data points. The 

sum of the P` shows data points have to be moved in total. Updating requires moving misassigned data from the data array 

to the buffer and back to the correct position in the data array. 

If full resort is triggered, program returns from updating function and using already determined cluster offsets calls 

resort to the buffer as shown previously. Move wrongly assigned data to buffer. If full resort was not triggered, data is 

copied from the data array to the buffer in the same way that the assignments were compacted. Data points that have been 

copied may leave gaps in the data array. Collect data from buffer takes largest time complexity, O ((K+D)*N), but for a 

small data set, all K blocks of threads run through the P’ data points in buffer and collect those that are assigned to it. The 

number of data points in buffer assigned to cluster K equals to the gaps in the data segment for cluster K. To collect data 

from the buffer and store it in gaps, match the locations of gaps with the locations of data points in the buffer. 

 

B. Hybrid Implementation 

The OpenMP-CUDA programming model is used for heterogeneous hybrid architecture. In general, the program 

shows combined parallelism of both OpenMP and CUDA at various stages of K-Means implementation. The serial part of 

the program is executed by the master thread on the host (CPU). Then, various worker threads launch GPU kernels and do 

the remaining parallel part of the program. Specifically, multiple CPU worker threads are created by an OpenMP 

instruction, and each worker thread launch one CUDA kernel [3]. 

When a kernel is launched, a large number of hardware threads i.e. GPU threads are generated to exploit data 

parallelism. Those threads are one-dimensional entity used to access data point attribute arrays with each one-dimension 

block consist of TPB threads. All threads in a block generated by the kernel will execute the same instructions as it is 

SIMD architecture. After every kernel finishes its parallel task, the CPU will collect final results do the remaining serial 

work. GPUs specific hierarchical architecture and memory bandwidth gives significant computational efficiency. The 

lifetime of variables in CUDA for the global memory is the entire application unless the programmer freed it. GPUs are 

normally well-suited for the application where massive data parallelism is required and it is weak at executing logical 

instructions. The CPU code also parallelized with OpenMP where huge data parallelism does not require [3]. 

 

IV.       EXPERIMENTAL RESULTS 

Experiments are performed intel xeon machine with Tesla C1060 gpu card. The synthetic data is created by uniform 

synthetic data generator on CentOS 5.9. CUDA 5.5 is used along with gcc 4.2 for compilation and computation purpose. 

The performance behavior is studied depending on change in number of clusters, dimensions and data point. The 

performance of K-Means is also recorded for various parallel implementations. 
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A. Change in dimension 

For change in dimension D, the speedup over the CPU reference version for 100,000 data points and 90 clusters 

remains at around 15 fold for values of D between 1 and 300. Table 5.6 shows speedup varies with change in number of 

dimensions, it goes upto 90 fold speedup for D = 600, 900 and 1200. This speedup is maintained for larger numbers of 

dimensions. 

Fig. 2 shows graphical representation of Table 1 for change in number of dimensions. Speedup remains constant on 10 

fold for dimensions 1 to 300. It gradually increases upto 90 fold for 300 to 600 dimensions and remains constant for larger 

numbers of dimensions. 

 

TABLE 1 PERFORMANCE FOR CHANGE IN DIMENSIONS 

DATA 

SET 

NO. OF 

DIMENSIONS 

(D) 

TIME (SEC) 

SPEEDUP 
CPU HYBRID 

N=100K 

K=90 

1 34.84 3.74 9.84X 

300 65.043 5.94 10.95X 

600 648.540 7.24 89.64X 

900 1115.50 12.63 88.38X 

1200 1316.78 14.56 90.56X 

 

 
Fig. 1 Chart for change in dimension 

 

B. Change in clusters 

For variable clusters K, Table 5.7 shows speedup variation with N = 100,000 and D = 1000, the 45 fold speedup 

roughly from K = 5 to K = 10 and again from K = 10 to K = 100 peaking at about a 100-fold speedup. This means that 

peak performance is achievable for a number of clusters well at 100. 

Fig.3 shows speedup performance for change in number of clusters, it remains stable after cluster increases beyond 

100.  

TABLE 2  PERFORMANCE FOR CHANGE IN CLUSTERS 

DATA 

SET 

NO. OF 

CLUSTERS 

(K) 

TIME (SEC) 

SPEEDUP CPU HYBRID 

N=100K 

D=1000 

5 13.80 5.63 2.45X 

10 231.984 5.11 45.50X 

100 1776.608 18.82 94.40X 

1000 10522.548 113.61 92.62X 

10000 40154.3010 419.80 95.65X 

 

 
Fig. 2 Chart for change in clusters 
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C. Change in data point 

For the change in number of data points, with K = 90 and D=1000, Table 5.8 shows rapid increase in performance 

from roughly 1 fold to 40 fold is observed between N = 1,000 and N=10,000, before the speedup increases more slowly 

from N=10,000 to N = 100,000, where it peaks at about 200 fold. For N = 150,000, a decrease to 170-fold speedup is 

observed. 

Fig. 4 shows variation in speedup for change in number of data points, it reaches to the peak value at 100,000 and 

decrease upto 70 fold for 150,000. 

 

TABLE 3 PERFORMANCE  FOR CHANGE IN DATA POINTS 

DATA 

SET 

NO. OF 

DATA 

POINTS 

(N) 

TIME (SEC) 

SPEEDUP 
CPU HYBRID 

D=1000 

K=90 

1000 2.10 3.3530 0X 

10000 147.61 3.42 43.17X 

50000 370.72 6.42 57.91X 

100000 1672.20 17.87 93.58X 

150000 1994.62 28.56 69.48X 

 

 
Fig. 3 Chart for change in data points 

 

D. Comparison  for various implementations 
The proposed work mainly shows four implementations i.e. sequential, OpenMP, CUDA and hybrid of K-Means 

algorithm on various architectures. Table 4 shows performance analysis of these four implementations with different data 

sets of different parameters. These are synthetic data sets generated by synthetic data generator. These results are 

calculated with four different data sets. First data set consists of 50K data object with 50 dimensions distributed in 50 

clusters. Second data set is having 50K data object with 1000 dimensions and distributed in 50 clusters. Third data set 

shows 100K data object with 1200 dimensions and 90 clusters. Fourth consists of 150K data object with 1000 dimensions 

and 1000 clusters. 

The result shows that hybrid execution is the fastest execution while sequential is the slowest execution. This result 

shows significant time difference between all the execution times. 

 

TABLE 4  COMPARISONS OF VARIOUS IMPLEMENTATIONS 

DATA SET 

TIME (SEC) 

SEQUENTI

AL 
OPENMP CUDA HYBRID 

N=50K 

D=50 

K=50 

15.864 3.8609 3.3541 3.3202 

N=50K 

D=1000 

K=50 

78.22771 19.1306 5.0995 4.7977 

N=100K 

D=1200 

K=90 

335.3584 81.0008 16.0543 14.5270 

N=150K 

D=1000 

K=1000 

10522.548 1478.3951 114.8749 
113.612

7 
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V.     CONCLUSIONS 

We have implemented various versions of K-means on CPU, GPU and hybrid architectures. These are efficient 

regardless of the size and dimensionality of the input data set. As the number of cluster increase it gives better 

performance compared to the increase in dimensions and data object. Our implementation wok effectively for energy 

efficient and low cost system enabled with GPU card for high speedup. We have efficiently used all the key feature of 

CUDA to gain significant performance from CUDA implementation. We also get speedup from the combination of 

CUDA and OpenMP i.e. hybrid compared to the sequential execution. 
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