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Abstract— We consider a curve in Euclidean 3-Space and the directional q-frame along the curve. The basic idea 

behind the directional q-frame is that the quasi-normal vector is the cross product of the tangent vector with the fixed 

vector. In this paper, we establish the local theory of space curves according to the directional q-frame. Moreover, we 

show the advantages of q-frame over the other frames such as the Frenet frame and Bishop (rotation-minimizing) 

frame. 
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I.  INTRODUCTION 

Bishop showed that we can define lots of frame along a space curve apart from the Frenet frame [1, 2]. Inspired by the 

3D offset curve application of the quasi-normal vector 
qn  [5, 6], Dede et al. (2015) introduced the directional q-frame 

along a space curve to construct a tubular surface [13].  The directional q-frame offers two key advantages over the 

Frenet frame [3, 8]: a) it is well defined even if the curve has vanishing second derivative [11], b) it avoid the 

unnecessary twist around the tangent. Moreover, the computation of the directional q-frame is easier than the rotation 

minimizing frames [4, 9, 10, 12], one of them is Bishop frame [1, 2]. 

The directional q-frame of a regular curve ( )t  is given by 
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where k  is the projection vector. 

The variation equations of the directional q-frame is given by  
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where the q-curvatures are expressed as follows 
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II.   LOCAL THEORY OF SPACE CURVE 

In this chapter, we will begin an investigation into the local theory of space curve by using the directional q-frame. 

First, we establish the invariance of the q-curvatures under an Euclidean motion of 3 . Then, we classified the 

directional q-frame into three types. 

Theorem 2.1. Let ( )t  be a regular curve. Then the q-curvatures are given by 
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Proof: Using (1) yields that ( )t   t  then differentiating and substituting (2) into the result gives 

2 2

1 2( ) .q qs k k   


     t n b  

On the other hand, from (1) we have  .q   k k n  Hence, together with the above equation we have 
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Thus 
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Differentiating the tangent vector t  gives 

                                                           
2

.
   






   




t                                                             (4)                 

Substituting (1) and (4) into (3), we then have 
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Using Lagrange's formula yields 
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Similarly, 
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Corollary 2.2. It is easy to see that the q-curvatures 
1 2,k k  and 

3k  depend on the projection vector .k   Thus, we state 

the following theorem. 

Theorem 2.3. Let   be a regular curve with the projection vector k and q-curvatures 
1 2,k k   and 

3k . Let  

3 3:F     be an Euclidean motion with the linear part A . Then, the q-curvatures are invariant under the Euclidean 

motion if the curve  F     has the new projection vector  .A k k   

Proof:  The curve   can be written as 

( ) ( ) (0)t A t F    

with the q-curvatures 1 2,k k    and  3k  . By differentiating the above equation, we have  ( ) ( )t A t     and  

( ) ( ).t A t     Thus, from (3)  it follows that  
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On the other hand, it is easy to see that 

, , .A A A A          k k k k  

Substituting the above equation into (5) gives 
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The other q-curvatures  2k    and  3k    can be obtained by using the similar method. In order to have the directional q-

frame to be Euclidean invariant, it is necessary that the projection vector k and the axis of Euclidean motion must be 

identical. Thus, we classified the q-frame into three types:  z-axis,  y-axis and  x-axis directional q-frames denoted by  

 , , ,q q zt n b k ,  , , ,q q yt n b k  and  , , ,q q xt n b k  with the projection vectors  (0,0,1)z k , (0,1,0)y k  and  

(1,0,0),x k   respectively . 

 
Fig. 1  y-axis directional q-frame along  the line. The quasi-normal  (red)  and  the quasi-binormal (black) vectors are 

shown. 
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Example 2.4. Now, let us consider the curve(line) parametrized by 

( ) ( ,1,1).t t   

From (1), the  y-axis directional q-frame is obtained as follows:  (1,0,0), (0,0,1)q t n   and  (0, 1,0)q  b   with  

(0,1,0)y k  . The  y-axis directional q-frame is illustrated in Figure 1. 

Example 2.5. Let us consider the curve given by  
3( ) (cos( ),sin( ), ).t t t t   

We have the  z-axis directional q-frame in the following form 
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where  (0,0,1).z k   

From (3), the q-curvatures are obtained as  
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Figure 2 compares the Frenet frame and  z-axis directional q-frame vectors along the curve ( ).t   

  
Fig. 2 The Frenet frame (left) and the q-frame (right) along the curve. The normal-plane vectors are shown. 

 

     Theorem 2.6. The Darboux vector qd  of the directional q-frame which is called the quasi-Darboux vector is obtained 

as  

3 2 1 .q q qk k k  d t n b  

Proof: The variation of directional q-frame  , , ,q qt n b k  along a curve is specified in terms of its vector angular 

velocity  qd   as 

                                                                     , , .q q q q q q q

       t d t n d n b d b                                                       (6) 

On the other hand, qd  can be written as 

                                                                          q q qa b c  d t n b                                                                               (7) 

where  , , .a b c   

Combining (2), (6) and (7) yields that  

3 2 1 .q q qk k k  d t n b  

Thus, the instantaneous angular speed of the directional q-frame is obtained by 
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The characteristic property of a rotation-minimizing frame(RMF) is that its angular velocity has no component along  

t  , since the directional q-frame is not RMF. However, let us consider again the curve in Example 2.5, the instantaneous 

angular speed of the  z-axis directional q-frame is obtained by 
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In fact, Figure 3 shows that despite the fact that the directional q-frame is not RMF, the behavior of the directional q-

frame is similar to that of the RMF. 
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Fig. 3 Comparison of instantaneous rates of rotation for the z-axis directional q-frame (a),  the Bishop Frame (b) and the 

Frenet frame (c). 

 

Example 2.7. Let us consider the curve given by  

3 5 2 3( ) ( 100, 5, )t t t t t       

It is easy to see that the second derivative of the curve vanishes at  0.t   Thus, the Frenet frame can not be computed 

at this point (highlighted by an arrow in Figure 4). On the other hand, the z-axis directional q-frame can be determined at 

this point 

  
Fig. 4  The Frenet frame (left) and the q-frame (right) along the curve. The normal-plane vectors are shown. 

 

Example 2.8. So far we have tried to show that the directional q-frame is superior to other frames. Now it is 

convenient to think that which directional q-frame is better. In order to find the better one, we again trust the comparison 

of the instantaneous rates of rotation.  

Let us consider a Bezier curve with the control points [0 5 0; 2 -2 2; 2 -1 1; 4 10 3], the instantaneous rates of rotation 

for the  z-axis,  y-axis and  x-axis directional q-frame are illustrated in Figure 5. Thus,  y-axis directional q-frame of the 

Bezier curve shown in Figure 5. 

  

Fig. 5  The comparison of instantaneous rates of rotation for z-axis (a),  x-axis (c) and  y-axis (b) directional q-frames 

(left) and the  y-axis directional q-frame (right) along the curve. The normal-plane vectors are shown. 

 

Corollary 2.9. Let   be a line in 
3 . Then the q-curvatures vanish identically,  1 2 3 0k k k   . 

Theorem 2.10. Let   be a unit speed curve. Then,   is a plane curve if we have the following relation 
2 2

1 2 1 2 2 3 1 3 0.k k k k k k k k      

Proof: Assume that the curve   lies in a plane which passes through the point p  and is perpendicular to the unit 

vector .u   Then we have 

                                                                                , 0.p u                                                                                   (8) 

Differentiating (8) gives , 0.u t   Thus, differentiating this equation again, then substituting (2) into the result gives 

                                                                                1 2, , 0.q qk u k u n b                                                                (9) 
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By differentiating (9), we have  

                                                         
1 2 3 1 3 2( ) , ( ) , 0.q qk k k u k k k u    n b                                                           (10) 

Thus, we get a systems of equations on  ,q un   and  ,q ub  . Solving (9) and (10) together gives 

2 2

1 2 1 2 2 3 1 3 0k k k k k k k k      

which completes the proof. 

 

III.    SPECIAL CASES 

In this section, we investigate some special cases. It is easy to see that the q-frame is not singular as often as the 

Frenet frame. However, there are some special cases need to be discussed. 

Case (i) One of the directional q-frame can be singular when  t   and  k  are parallel. Observe that this case may 

occur when the curve is a line. For instance,  x-axis directional q-frame is singular if the curve(line) is given by  

( ) ( ( ), , )t x t a b    with  ,a b  . To determine the  x-axis directional q-frame along this curve, we consider the other 

directional q-frames. Let us denote by  
,q zn ,  

,q yn   and  
,q xn   the quasi-normal vectors of the  z-axis,  y-axis and  x-axis 

directional q-frames,  respectively.  It is obvious that  
,q xn   may be deduced from  

,q yn   and  
, .q zn  Thus we have  

, , ,cos sin .q x q y q z  n n n                            

From (1) and above equation, the quasi-binormal vector  
,q xb   is obtained as 

, , ,sin cos .q x q y q z  b b b  

where     is the angle between  
,q xn   and  

, .q yn   

Let us consider the line in Example 1. The tangent vector  (1,0,0)t   and  (1,0,0)x k   are identical. For  

3 / 4,    the quasi-normal vectors  , ( )q z redn  , , ( )q y blackn   and  , ( )q x greenn   are shown in Figure 6.  An analogous 

system can be formulated in the cases where  y-axis and  z-axis directional q-frames are singular. 

 
Fig. 6 The quasi-normal vectors along  the line . 

 

Case (ii) The quasi-normal and the quasi-binormal vectors of  z-axis and  x-axis directional q-frames are in the 

opposite direction with the normal and the binormal vectors of Frenet frame when the curve is given by  

( ) ( ( ), ( ), )t x t y t a    or  ( ) ( , ( ), ( ))t a y t z t   , respectively. It is easy to see that we have  ,q q   n n b b   and  

1 2 3, 0, 0.k k k        

On the other hand, if the curve is parametrized by  ( ) ( ( ), , ( ))t x t a z t  , then  y-axis directional q-frame is identical 

with the Frenet frame, namely,  ,q q n n b b   and  1 2 3, 0, 0.k k k      

 

IV.    CONCLUSIONS 

Adapted frames on (primarily) spatial curves have had a renewed interest over the last ten years or so, mainly because 

of their applications on sweep surfaces and rotation–minimizing frame curves. In this paper, we have investigated the 

directional q-frame along a space curve.  We have given some examples to illustrate the advantages of the proposed 

method. The main advantage of the directional q-frame is that it can be easily constructed even when the curvature of the 

curve vanishes. 
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