Volume 5, Issue 12, December 2015 ISSN: 2277 128X
International Journal of Advanced Research in

Computer Science and Software Engineering

e Research Paper
Available online at: www.ijarcsse.com

Directional g-frame Along a Space Curve

Mustafa Dede Cumali Ekici” Ali Gorgllu
Department of Mathematics Department of Mathematics-Computer Department of Mathematics-Computer
Kilis 7 Aralik University, Turkey  Eskisehir Osmangazi University, Turkey  Eskisehir Osmangazi University, Turkey

Abstract— We consider a curve in Euclidean 3-Space and the directional g-frame along the curve. The basic idea
behind the directional g-frame is that the quasi-normal vector is the cross product of the tangent vector with the fixed
vector. In this paper, we establish the local theory of space curves according to the directional g-frame. Moreover, we
show the advantages of g-frame over the other frames such as the Frenet frame and Bishop (rotation-minimizing)
frame.
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I. INTRODUCTION
Bishop showed that we can define lots of frame along a space curve apart from the Frenet frame [1, 2]. Inspired by the
3D offset curve application of the quasi-normal vector n, [5, 6], Dede et al. (2015) introduced the directional g-frame

along a space curve to construct a tubular surface [13]. The directional g-frame offers two key advantages over the
Frenet frame [3, 8]: a) it is well defined even if the curve has vanishing second derivative [11], b) it avoid the
unnecessary twist around the tangent. Moreover, the computation of the directional g-frame is easier than the rotation
minimizing frames [4, 9, 10, 12], one of them is Bishop frame [1, 2].

The directional g-frame of a regular curve «(t) is given by

a' tAk
=M,nqzm,bq:tAnq Q)
where K is the projection vector.
The variation equations of the directional g-frame is given by
t 0 k k|t
ng |=lef| -k 0 K |ng )
b'q -k, —k; 0] b,

where the g-curvatures are expressed as follows

<t',nq> K _<t”bq> K — <nq,b'(]> 3)

el e el

Il. LOCAL THEORY OF SPACE CURVE
In this chapter, we will begin an investigation into the local theory of space curve by using the directional g-frame.
First, we establish the invariance of the g-curvatures under an Euclidean motion of %*. Then, we classified the
directional g-frame into three types.
Theorem 2.1. Let «(t) be aregular curve. Then the g-curvatures are given by
detfe’ k] | _ (' K)(a" )= (k)

2
o o A oo K|

k =

and
(@' k)det[a’,a", K]
o Al
Proof: Using (1) yields that «'(t) = o[t then differentiating and substituting (2) into the result gives
a'(s) =[] t+ ] kn, +[| kb
On the other hand, from (1) we have o' Ak =|a’ Ak|n,. Hence, together with the above equation we have

<a"(S), a' A k> = ||a’ A k||||oz'||2 k.
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Thus

K - det[a”, &', K]
e o K|

Differentiating the tangent vector t gives

_a'|e] =]

.
oI

4)

Substituting (1) and (4) into (3), we then have
k :—1 <a” a'/\—a’/\k>
? ||oc’||3 ' o' A K|

(o' k) (a" @) [ (a" k)
!’ 3 ! '
eIl A K]

Using Lagrange's formula yields

2

Similarly,
<a’,k>det[a',a”, K]
k, = —
o K[ e
Corollary 2.2. 1t is easy to see that the g-curvatures k;,k, and k, depend on the projection vector k. Thus, we state

the following theorem.
Theorem 2.3. Let « be a regular curve with the projection vector k and g-curvatures k;,k, and k,. Let

F : % > R Dbe an Euclidean motion with the linear part A . Then, the g-curvatures are invariant under the Euclidean

motion if the curve y =F o« has the new projection vector k™ = Ak.
Proof: The curve y can be written as

7(t) = Ax(t) + F(0)
with the g-curvatures k',k, and k; . By differentiating the above equation, we have »'(t)= Ax'(t) and
¥"(t) = Ax"(t). Thus, from (3) it follows that
. det[y", 7", k] det[Aa”, Aa’, Ak
I AT ] ©
I 7 Ak

| cc [ Ac  AK|

On the other hand, it is easy to see that
A =l | Ak = K] | Ac” ~ Ak = [l AK].
Substituting the above equation into (5) gives
. det[a”, a' K]
K = T el
eIl A K
The other g-curvatures k, and k, can be obtained by using the similar method. In order to have the directional g-

frame to be Euclidean invariant, it is necessary that the projection vector k and the axis of Euclidean motion must be
identical. Thus, we classified the g-frame into three types: z-axis, y-axis and x-axis directional g-frames denoted by

{tng.b.k,} . {tn,b k| and {tn, b, k| with the projection vectors k,=(0,01) , k,=(0,10) and
k, =(0,0), respectively.
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Fig. 1 y-axis directional g-frame along the line. The quasi-normal (red) and the quasi-binormal (black) vectors are
shown.
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Example 2.4. Now, let us consider the curve(line) parametrized by

a(t)=(t,11).
From (1), the y-axis directional g-frame is obtained as follows: t=(10,0),n, =(0,0,1) and b, =(0,-10) with
k, =(0,1,0) . The y-axis directional g-frame is illustrated in Figure 1.
Example 2.5. Let us consider the curve given by
a(t) = (cos(t),sin(t),t%).
We have the z-axis directional g-frame in the following form

t = J;T(—sin(t),cos(t),sﬁ)
n, = (cos(t),sin(t),0)

— 1 (_2t2 i 2 _ 2
b, = W( 3t sin(t), 3t cos(t), J1+9t )

where k, =(0,0,1).
From (3), the g-curvatures are obtained as
1 6t 3’

- K =— K = .
Jivoz f 14977 (f1io?

Figure 2 compares the Frenet frame and z-axis directional g-frame vectors along the curve «(t).

Fig. 2 The Frenet frame (left) and the g-frame (right) along the curve. The normal-plane vectors are shown.

Theorem 2.6. The Darboux vector d,, of the directional g-frame which is called the quasi-Darboux vector is obtained
as

d, =kt—k,n, +kb,.
Proof: The variation of directional g-frame {t,nq,bq,k} along a curve is specified in terms of its vector angular
velocity d, as
t':dq /\t,n'q:dq/\nq,b'q:dq/\bq. (6)
On the other hand, d, can be written as
d, =at+bn, +cb, )
where a,b,ceR.

Combining (2), (6) and (7) yields that
d, =k;t-k,n, +kb,.

Thus, the instantaneous angular speed of the directional g-frame is obtained by

|d,] = NS
The characteristic property of a rotation-minimizing frame(RMF) is that its angular velocity has no component along

t , since the directional g-frame is not RMF. However, let us consider again the curve in Example 2.5, the instantaneous
angular speed of the z-axis directional g-frame is obtained by

[81t° +18t* +36t* +1
"dq": 4\2
\ (1+9t4)
In fact, Figure 3 shows that despite the fact that the directional g-frame is not RMF, the behavior of the directional g-
frame is similar to that of the RMF.
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Fig. 3 Comparison of instantaneous rates of rotation for the z-axis directional g-frame (a), the Bishop Frame (b) and the

Example 2.7. Let us consider the curve given by
a(t) = Gt +100,t2 +t+5,—t%)

It is easy to see that the second derivative of the curve vanishes at t =0. Thus, the Frenet frame can not be computed
at this point (highlighted by an arrow in Figure 4). On the other hand, the z-axis directional g-frame can be determined at

this point

Frenet frame (c).

{ﬁ

Fig. 4 The Frenet frame (left) and the g-frame (right) along the curve. The normal-plane vectors are shown.

Example 2.8. So far we have tried to show that the directional g-frame is superior to other frames. Now it is
convenient to think that which directional g-frame is better. In order to find the better one, we again trust the comparison

of the instantaneous rates of rotation.

Let us consider a Bezier curve with the control points [0 5 0; 2 -2 2; 2 -1 1; 4 10 3], the instantaneous rates of rotation
for the z-axis, y-axis and x-axis directional g-frame are illustrated in Figure 5. Thus, y-axis directional g-frame of the

Bezier curve shown in Figure 5.
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Fig. 5 The comparison of instantaneous rates of rotation for z-axis (a), x-axis (c) and y-axis (b) directional g-frames
(left) and the y-axis directional g-frame (right) along the curve. The normal-plane vectors are shown.

Corollary 2.9. Let o be aline in R°. Then the g-curvatures vanish identically, k, =k, =k, =0.
Theorem 2.10. Let « be a unit speed curve. Then, « is a plane curve if we have the following relation
kk, —kk, +k’k, +k’k, =0.
Proof: Assume that the curve « lies in a plane which passes through the point p and is perpendicular to the unit
vector u. Then we have

<a—p,u>:0.

®)

Differentiating (8) gives <t,u> =0. Thus, differentiating this equation again, then substituting (2) into the result gives
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By differentiating (9), we have

(ki —koks) (g, u) + (ks +k;) (b, u) =0. (10)
Thus, we get a systems of equations on (n,,u) and (b,,u) . Solving (9) and (10) together gives
kiké _kikz + k22k3 + k12k3 =0
which completes the proof.

I1l. SPECIAL CASES
In this section, we investigate some special cases. It is easy to see that the q-frame is not singular as often as the
Frenet frame. However, there are some special cases need to be discussed.
Case (i) One of the directional g-frame can be singular when t and k are parallel. Observe that this case may
occur when the curve is a line. For instance, x-axis directional g-frame is singular if the curve(line) is given by
a(t) =(x(t),a,b) with a,beR . To determine the x-axis directional g-frame along this curve, we consider the other

directional g-frames. Let us denote by n n,, and n,  the quasi-normal vectors of the z-axis, y-axisand x-axis

q,z? q,y
directional g-frames, respectively. It is obvious that n,, may be deduced from n_  and n,,. Thuswe have
Ny =COSeN,  +singn, ,.
From (1) and above equation, the quasi-binormal vector b, is obtained as
b, . =singb,  +cosgb, .
where ¢ is the angle between n, , and n,.
Let us consider the line in Example 1. The tangent vector t=(1,0,0) and k,=(10,0) are identical. For
@ =3r14, the quasi-normal vectors n, (red) , n, (black) and n,,(green) are shown in Figure 6. An analogous
system can be formulated in the cases where y-axis and z-axis directional g-frames are singular.

0.5.

X

Y
Fig. 6 The quasi-normal vectors along the line .

Case (ii) The quasi-normal and the quasi-binormal vectors of z-axis and x-axis directional g-frames are in the
opposite direction with the normal and the binormal vectors of Frenet frame when the curve is given by

a(t) = (x(t),y(t).a) or «a(t)=_(a y(t) z(t)) , respectively. It is easy to see that we have n,=-nb,=-b and
k,=—x,k, =0k, =7=0.

On the other hand, if the curve is parametrized by «(t) = (X(t),a, z(t)) , then y-axis directional g-frame is identical
with the Frenet frame, namely, n, =n,b, =b and k =k, =0,k, =7=0.

IV. CONCLUSIONS
Adapted frames on (primarily) spatial curves have had a renewed interest over the last ten years or so, mainly because
of their applications on sweep surfaces and rotation—minimizing frame curves. In this paper, we have investigated the
directional g-frame along a space curve. We have given some examples to illustrate the advantages of the proposed
method. The main advantage of the directional g-frame is that it can be easily constructed even when the curvature of the
curve vanishes.
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