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Abstract— This paper presents a neural network based efficient block classification of compound images for desktop 

sharing. The objective is to maximize the precision and recall rate of the classification algorithm, while at the same 

time minimizing the execution and training time of the neural network. It segments computer screen images into 

text/graphics, picture/background blocks by using as input, the statistical features based on DWT coefficients in the 

sub-bands of each 8×8 block. The proposed algorithm can perform accurate block classification of text information 

with different fonts, sizes and ways of arrangement from the background image, so that text/graphics blocks can be 

compressed at higher quality than background image blocks. The proposed work is expected to minimize block 

classification error due to the adaptive nature of neural network. 
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I. INTRODUCTION 

In 2009, A. Said and A. Drukarev, “Simplified segmentation for compound image compression” presented the 

three basic segmentation schemes: object-based, layer-based and block-based. Classification techniques‟ working on 

approximate object boundaries reduces the localization and precision of the segmentation, but in exchange allows faster, 

one-pass segmentation. The results where rigorous standards if visual quality have to be satisfied. In 1998, R. de Queiroz 

and R. Eschback, ”Fast segmentation of JPEG compressed documents” discussed the novel technique for segmentation 

of a JPEG compressed document based on block activity. The activity is measured as the number of bits spent to encode 

each block. Each number is mapped to a pixel brightness value in an auxiliary image which is then used for 

segmentation. This paper introduces the use of such an image and show an example of a simple segmentation algorithm, 

which was successfully applied to test documents. The document is segmented into characteristics regions labeled as 

background, halftones, text, graphics, and continuous tone images.  

“Neural Networks: A Systematic Introduction” by Raul Rojas Single perceptrons can be thought of as feature 

detectors. Perceptrons are defined with weights adequate for recognizing the letter in which t pixels are black. If another 

letter is presented, in which one black pixel is missing, the excitation of the perceptron is t − 1. If the threshold of the 

perceptron is set to t − 1, then this perceptron will be capable of correctly classifying patterns with one noisy pixel. By 

adjusting the threshold of the unit more noisy pixels can be tolerated.  

 

II. SEGMENTATION 

The proposed compound image compression for real-time computer screen image transmission follows first-

pass of two-pass segmentation procedure and classifies image blocks into picture and text/graphics blocks by 

thresholding the number of colors of each block. Basic shape primitives of text/graphics from picture blocks, shape 

primitives from text/graphics blocks are extracted and are lossless coded using a combined shape-based and palette based 

coding algorithm. Pictorial blocks are coded by lossy JPEG [1, 2]. So numerous coding algorithms are needed in this 

method and basic shape primitives defined in this method is not ample for text of different sizes. In this paper, the 

proposed algorithm first classifies 8 × 8 non-overlapping blocks of pixels into two classes, such as, text/graphics and 

picture/background based on the statistical feature computed from detail sub-band coefficients of each 8 × 8 DWT 

transformed image block [3, 6]. Then, each class is compressed using an algorithm specifically designed for that class. 

The proposed one-pass block classification simplifies segmentation by separating the image into two classes of pixels 

and also minimizes misclassification error irrespective of font color, style, orientation and background complexity. 

 

III. WAVELET TRANSFORM 

 Unlike the Fourier transform, whose basis functions are sinusoids, wavelet transforms are based on small waves 

called wavelets of varying frequency and limited duration. In 1987, wavelets are first shown to be the foundation of a 

powerful new approach to signal processing and analysis called multi-resolution theory. Multi-resolution theory 

incorporates and unifies techniques from a variety of disciplines including sub-band coding signal processing, quadrature 

mirror filtering from digital speech recognition and pyramidal image processing [4, 5]. Another important imaging 

technique with ties to multi-resolution analysis sub-band coding. In this coding, an image is decomposed into a set of 

band-limited components called sub-bands, which can be reassembled to reconstruct the original image without error. 

http://www.ijarcsse.com/
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IV. NEURAL NETWORKS 

A. Network Design 

The work flow for the neural network design process has seven steps: 

1.  Collect data 

2.  Create the network 

3.  Configure the network 

4.  Initialize the weights and biases 

5.  Train the network 

6.  Validate the network 

7.  Use the network 

 

After a neural network has been created, it needs to be configured and then trained.  Configuration involves 

arranging the network so that it is compatible with the problem to be solved, as defined by sample data. After the 

network has been configured, the adjustable network parameters (weights and biases) need to be tuned, so that the 

network performance is optimized. This tuning process is referred to as training the network. Configuration and training 

require that the network be provided with example data.   

 

B. Neuron Model 
The fundamental building block for neural networks is the single-input neuron, such as this example. 

 
Fig.1 Simple neuron 

 

First, the scalar input p is multiplied by the scalar weight w to form the product wp, again a scalar. Second, the 

weighted input wp is added to the scalar bias b to form the net input n. (In this case, you can view the bias as shifting the 

function f to the left by an amount b.  The bias is much like a weight, except that it has a constant input of 1.)  Finally, 

the net input is passed through the transfer function f, which produces the scalar output a. The names given to these three 

processes are:  the weight function, the net input function and the transfer function. For many types of neural networks, 

the weight function is a product of a weight times the input, but other weight functions (e.g., the distance between the 

weight and the input, |w − p|) are sometimes used. The most common net input function is the summation of the 

weighted inputs with the bias, but other operations, such as multiplication, can be used. Note that w and b are both 

adjustable scalar parameters of the neuron.  

 

C. Neuron with Vector Input 

The simple neuron can be extended to handle inputs that are vectors. A neuron with a single R-element input 

vector is shown below.  Here the individual input elements  p1 , p2, … pR  are  multiplied by weights  w1,1 , w1,2 

,…w1, R  and the weighted values are fed to the summing junction. Their sum is simply Wp, the dot product of the 

(single row) matrix W and the vector p. 

 
Fig.2 Neuron with vector input 

 

The neuron has a bias b, which is summed with the weighted inputs to form the net input n.  (In addition to the 

summation, other net input functions can be used). The net input n is the argument of the transfer function f. 
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D. Abbreviated Notation 

When you consider networks with many neurons, and perhaps layers of many neurons, there is so much detail 

that the main thoughts tend to be lost. Thus, an abbreviated notation for an individual neuron has been devised. This 

notation, which is used later in circuits of multiple neurons, is shown here.  

 
Fig.3 Abbreviated notation of neuron 

 

The input vector p is represented by the solid dark vertical bar at the left.  The dimensions of p are shown below 

the symbol p in the figure as R × 1.  (Note that a capital letter, such as R in the previous sentence, is used when referring 

to the size of a vector.) Thus, p is a vector of R input elements. These inputs post multiply the single-row, R-column 

matrix W. As before, a constant 1 enters the neuron as an input and is multiplied by a scalar bias b. The net input to the 

transfer function f is n, the sum of the bias b and the product Wp. This sum is passed to the transfer function f to get the 

neuron‟s output a, which in this case is a scalar. Note that if there were more than one neuron, the network output would 

be a vector. A layer of a network is defined in the previous figure. A layer includes the weights, the multiplication and 

summing operations (here realized as a vector product Wp), the bias b, and the transfer function f.  The array of inputs, 

vector p, is not included in or called a layer. As with the “Simple Neuron”, there are three operations that take place in 

the layer: the weight function (matrix multiplication, or dot product, in this case), the net input function (summation, in 

this case), and the transfer function. Each time this abbreviated network notation is used, the sizes of the matrices are 

shown just below their matrix variable names. This notation will allow you to understand the architectures and follow the 

matrix mathematics associated with them. When a specific transfer function is to be used in a figure, the symbol for that 

transfer function replaces the f shown above. Here are some examples. 

 
 

Fig.4 Different types of layer transfer functions 

 

E. One Layer of Neurons 

A one-layer network with R input elements and S neurons follow. 

 
Fig.5 One-layer neural network 

 

In this network, each element of the input vector p is connected to each neuron input through the weight matrix 

W. The ith neuron has a summer that gathers its weighted inputs and bias to form its own scalar output n(i). The various 

n(i) taken together form an S-element net input vector n. Finally, the neuron layer outputs form a column vector a.  The 

expression for a is shown at the bottom of the figure. Note that it is common for the number of inputs to a layer to be 

different from the number of neurons (i.e., R is not necessarily equal to S). A layer is not constrained to have the number 

of its inputs equal to the number of its neurons. The input vector elements enter the network through the weight matrix 

W. Note that the row indices on the elements of matrix W indicate the destination neuron of the weight, and the column 

indices indicate which source is the input for that weight. Thus, the indices in w1, 2 say that the strength of the signal 

from the second input element to the first (and only) neuron is w1, 2.  
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Fig.6 R-input one-layer network 

 

F.   Inputs and Layers 

To describe networks having multiple layers, the notation must be extended. Specifically, it needs to make a 

distinction between weight matrices that are connected to inputs and weight matrices that are connected between layers. 

It also needs to identify the source and destination for the weight matrices. We will call weight matrices connected to 

inputs input weights; we will call weight matrices connected to layer outputs layer weights. Further, superscripts are used 

to identify the source (second index) and the destination (first index) for the various weights and other elements of the 

network.  

 
Fig.7 One layer multiple input network 

 

G.  Multiple Layers of Neurons 

A network can have several layers. Each layer has a weight matrix W, a bias vector b, and an output vector a. 

To distinguish between the weight matrices, output vectors, etc., for each of these layers in the figures, the number of the 

layer is appended as a superscript to the variable of interest. You can see the use of this layer notation in the three-layer 

network shown next, and in the equations at the bottom of the figure. 

 
Fig.8 Three layer neural network 

 

The network shown above has R1 inputs, S1 neurons in the first layer, S2 neurons in the second layer, etc.  It is 

common for different layers to have different numbers of neurons. A constant input 1 is fed to the bias for each neuron. 

Note that the outputs of each intermediate layer are the inputs to the following layer. Thus layer 2 can be analyzed as a 

one-layer network with S1 inputs, S2 neurons, and an S2 × S1 weight matrix W2.  The input to layer 2 is a1; the output 

is a2. Now that all the vectors and matrices of layer 2 have been identified, it can be treated as a single-layer network on 

its own.  This approach can be taken with any layer of the network. The layers of a multilayer network play different 

roles.  A layer that produces the network output is called an output layer. All other layers are called hidden layers.  The 

three-layer network shown earlier has one output layer (layer 3) and two hidden layers (layer 1 and layer 2).  Some refer 

to the inputs as a fourth layer. The matlab toolbox does not use that designation. The architecture of a multilayer network 

with a single input vector can be specified with the notation R − S1 − S2 −...− SM, where the number of elements of the 

input vector and the number of neurons in each layer are specified.  
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Fig.9 Abbreviated notation of three-layer network 

 

Multiple-layer networks are quite powerful. For instance, a network of two layers, where the first layer is 

sigmoid and the second layer is linear, can be trained to approximate any function (with a finite number of 

discontinuities) arbitrarily well.   

 

V. IMPLEMENTATION AND TESTING 

 The proposed neural network is implemented on an Intel Atom Dual Core Processor using MATLAB 7.12, and 

several compound images of various sizes were used to demonstrate the performance of the proposed system. The 

classified 8x8 blocks of Computer Screen Image are tested by using precision rate and recall rate. The recall rate is 

defined as the ratio of correctly detected background/text/graphics blocks to the sum of correctly detected 

background/text/graphics blocks plus false negatives. False negatives are those blocks in the image which are actually 

text characters, but have not been detected by the algorithm. The precision rate is defined as the ratio of correctly 

detected background/text/graphics blocks to the sum of correctly detected blocks plus false positives. False positives are 

those blocks in the image which are actually not characters of a text, but have been detected by the algorithm as text 

blocks. 

 

Table.1 Precision and Recall rates for neural network based block classification algorithm 

Image Mode Background Text Graphics 

  PR RR PR RR PR RR 

Ch1.jpg T 100 100 100 100 100 100 

Ch1.jpg S 100 100 100 100 100 100 

Ch2.jpg S 100 100 100 100 100 100 

Ch3.jpg S 100 100 100 80 97.436 100 

Ch3.jpg T 100 100 100 100 100 100 

Ch3.jpg S 100 100 100 100 100 100 

Ch4.jpg S 100 100 100 100 100 100 

Ch5.jpg S 100 100 100 100 100 100 

Ch6.jpg S 100 100 100 93.75 96 100 

Ch6.jpg T 100 100 100 100 100 100 

Ch6.jpg S 100 100 100 100 100 100 

            

A. Functional testing 

Functional tests at the system level are used to ensure that the behavior of the system adheres to the 

requirements specification. Functional tests are black box in nature. The focus is on the inputs and proper outputs for 

each function. Improper and illegal inputs must also be handled by the system. System behavior under the latter 

circumstances tests must be observed. All functions must be tested. 

 

B. Performance testing 

 Performance testing is used to determine the speed or effectiveness of a computer, network, software program 

or device. The training time and number of iterations is used during training to evaluate the performance of a neural 

network. 

 

Table.2 Performance of neural networks MS_Net1 and MS_Net2 during training 

Image 
Number of iterations during training 

Training Time 
MS_Net1 MS_Net2 

Ch1.jpg 68 16 32.687927 

Ch3.jpg 25 9 16.095989 

Ch6.jpg 9 13 14.910167 
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VI.  CONCLUSION AND FUTURE ENHANCEMENT 

A. Experimental Results 

The proposed neural network is implemented on an Intel Atom Dual Core Processor using MATLAB 7.12, and 

several compound images of various sizes were used to demonstrate the performance of the proposed system. First, it 

was found that the system worked with 100% accuracy during training mode. For a similar compound image, the system 

was able to achieve over 95% accuracy during simulation mode. Furthermore, any inaccurate results can be corrected via 

training and one can expect nearly 100% accuracy in simulate mode. 

 

B. Future Enhancement 

For the proposed neural network based algorithm, accuracy for a similar compound image was over 95% 

accuracy during simulation mode. Future work is to be done to achieve same level of accuracy for non-similar compound 

images as well. This can be achieved by adding more hidden layers to the neural network. 
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Table.3 Images used for testing Precision and Recall rate 
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ch2.jpg 

 
ch3.jpg 
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ch5.jpg 

 
ch6.jpg 
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Fig.10 Neural network 1 being trained 

 

 
Fig.11 Neural network 2 being trained 

 

 
Fig.12 Segmented grey-scale image of „ch1.jpg‟ 
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Fig.13 Blocks classified as Background 

 

 
Fig.14 Blocks classified as Text 

 

 
Fig.15 Blocks classified as Graphics 
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Fig.16 Runtime for project in train mode using „ch1.jpg‟ 
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