
© 2014, IJARCSSE All Rights Reserved Page | 703

 Volume 4, Issue 8, August 2014 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Neural Network Based Efficient Block Classification of Computer

Screen Images for Desktop Sharing
S Kumar

Department of Computer Science and Engineering

JIS College of Engineering, Kolkata, India

Abstract— This paper presents a neural network based efficient block classification of compound images for desktop

sharing. The objective is to maximize the precision and recall rate of the classification algorithm, while at the same

time minimizing the execution and training time of the neural network. It segments computer screen images into

text/graphics, picture/background blocks by using as input, the statistical features based on DWT coefficients in the

sub-bands of each 8×8 block. The proposed algorithm can perform accurate block classification of text information

with different fonts, sizes and ways of arrangement from the background image, so that text/graphics blocks can be

compressed at higher quality than background image blocks. The proposed work is expected to minimize block

classification error due to the adaptive nature of neural network.

Keywords— Compound image, Neural Network, Block Classification, Segmentation

I. INTRODUCTION

In 2009, A. Said and A. Drukarev, “Simplified segmentation for compound image compression” presented the

three basic segmentation schemes: object-based, layer-based and block-based. Classification techniques‟ working on

approximate object boundaries reduces the localization and precision of the segmentation, but in exchange allows faster,

one-pass segmentation. The results where rigorous standards if visual quality have to be satisfied. In 1998, R. de Queiroz

and R. Eschback, ”Fast segmentation of JPEG compressed documents” discussed the novel technique for segmentation

of a JPEG compressed document based on block activity. The activity is measured as the number of bits spent to encode

each block. Each number is mapped to a pixel brightness value in an auxiliary image which is then used for

segmentation. This paper introduces the use of such an image and show an example of a simple segmentation algorithm,

which was successfully applied to test documents. The document is segmented into characteristics regions labeled as

background, halftones, text, graphics, and continuous tone images.

“Neural Networks: A Systematic Introduction” by Raul Rojas Single perceptrons can be thought of as feature

detectors. Perceptrons are defined with weights adequate for recognizing the letter in which t pixels are black. If another

letter is presented, in which one black pixel is missing, the excitation of the perceptron is t − 1. If the threshold of the

perceptron is set to t − 1, then this perceptron will be capable of correctly classifying patterns with one noisy pixel. By

adjusting the threshold of the unit more noisy pixels can be tolerated.

II. SEGMENTATION

The proposed compound image compression for real-time computer screen image transmission follows first-

pass of two-pass segmentation procedure and classifies image blocks into picture and text/graphics blocks by

thresholding the number of colors of each block. Basic shape primitives of text/graphics from picture blocks, shape

primitives from text/graphics blocks are extracted and are lossless coded using a combined shape-based and palette based

coding algorithm. Pictorial blocks are coded by lossy JPEG [1, 2]. So numerous coding algorithms are needed in this

method and basic shape primitives defined in this method is not ample for text of different sizes. In this paper, the

proposed algorithm first classifies 8 × 8 non-overlapping blocks of pixels into two classes, such as, text/graphics and

picture/background based on the statistical feature computed from detail sub-band coefficients of each 8 × 8 DWT

transformed image block [3, 6]. Then, each class is compressed using an algorithm specifically designed for that class.

The proposed one-pass block classification simplifies segmentation by separating the image into two classes of pixels

and also minimizes misclassification error irrespective of font color, style, orientation and background complexity.

III. WAVELET TRANSFORM

 Unlike the Fourier transform, whose basis functions are sinusoids, wavelet transforms are based on small waves

called wavelets of varying frequency and limited duration. In 1987, wavelets are first shown to be the foundation of a

powerful new approach to signal processing and analysis called multi-resolution theory. Multi-resolution theory

incorporates and unifies techniques from a variety of disciplines including sub-band coding signal processing, quadrature

mirror filtering from digital speech recognition and pyramidal image processing [4, 5]. Another important imaging

technique with ties to multi-resolution analysis sub-band coding. In this coding, an image is decomposed into a set of

band-limited components called sub-bands, which can be reassembled to reconstruct the original image without error.

http://www.ijarcsse.com/

 Kumar, International Journal of Advanced Research in Computer Science and Software Engineering 4(8),

August - 2014, pp. 703-711

© 2014, IJARCSSE All Rights Reserved Page | 704

IV. NEURAL NETWORKS

A. Network Design

The work flow for the neural network design process has seven steps:

1. Collect data

2. Create the network

3. Configure the network

4. Initialize the weights and biases

5. Train the network

6. Validate the network

7. Use the network

After a neural network has been created, it needs to be configured and then trained. Configuration involves

arranging the network so that it is compatible with the problem to be solved, as defined by sample data. After the

network has been configured, the adjustable network parameters (weights and biases) need to be tuned, so that the

network performance is optimized. This tuning process is referred to as training the network. Configuration and training

require that the network be provided with example data.

B. Neuron Model
The fundamental building block for neural networks is the single-input neuron, such as this example.

Fig.1 Simple neuron

First, the scalar input p is multiplied by the scalar weight w to form the product wp, again a scalar. Second, the

weighted input wp is added to the scalar bias b to form the net input n. (In this case, you can view the bias as shifting the

function f to the left by an amount b. The bias is much like a weight, except that it has a constant input of 1.) Finally,

the net input is passed through the transfer function f, which produces the scalar output a. The names given to these three

processes are: the weight function, the net input function and the transfer function. For many types of neural networks,

the weight function is a product of a weight times the input, but other weight functions (e.g., the distance between the

weight and the input, |w − p|) are sometimes used. The most common net input function is the summation of the

weighted inputs with the bias, but other operations, such as multiplication, can be used. Note that w and b are both

adjustable scalar parameters of the neuron.

C. Neuron with Vector Input

The simple neuron can be extended to handle inputs that are vectors. A neuron with a single R-element input

vector is shown below. Here the individual input elements p1 , p2, … pR are multiplied by weights w1,1 , w1,2

,…w1, R and the weighted values are fed to the summing junction. Their sum is simply Wp, the dot product of the

(single row) matrix W and the vector p.

Fig.2 Neuron with vector input

The neuron has a bias b, which is summed with the weighted inputs to form the net input n. (In addition to the

summation, other net input functions can be used). The net input n is the argument of the transfer function f.

 Kumar, International Journal of Advanced Research in Computer Science and Software Engineering 4(8),

August - 2014, pp. 703-711

© 2014, IJARCSSE All Rights Reserved Page | 705

D. Abbreviated Notation

When you consider networks with many neurons, and perhaps layers of many neurons, there is so much detail

that the main thoughts tend to be lost. Thus, an abbreviated notation for an individual neuron has been devised. This

notation, which is used later in circuits of multiple neurons, is shown here.

Fig.3 Abbreviated notation of neuron

The input vector p is represented by the solid dark vertical bar at the left. The dimensions of p are shown below

the symbol p in the figure as R × 1. (Note that a capital letter, such as R in the previous sentence, is used when referring

to the size of a vector.) Thus, p is a vector of R input elements. These inputs post multiply the single-row, R-column

matrix W. As before, a constant 1 enters the neuron as an input and is multiplied by a scalar bias b. The net input to the

transfer function f is n, the sum of the bias b and the product Wp. This sum is passed to the transfer function f to get the

neuron‟s output a, which in this case is a scalar. Note that if there were more than one neuron, the network output would

be a vector. A layer of a network is defined in the previous figure. A layer includes the weights, the multiplication and

summing operations (here realized as a vector product Wp), the bias b, and the transfer function f. The array of inputs,

vector p, is not included in or called a layer. As with the “Simple Neuron”, there are three operations that take place in

the layer: the weight function (matrix multiplication, or dot product, in this case), the net input function (summation, in

this case), and the transfer function. Each time this abbreviated network notation is used, the sizes of the matrices are

shown just below their matrix variable names. This notation will allow you to understand the architectures and follow the

matrix mathematics associated with them. When a specific transfer function is to be used in a figure, the symbol for that

transfer function replaces the f shown above. Here are some examples.

Fig.4 Different types of layer transfer functions

E. One Layer of Neurons

A one-layer network with R input elements and S neurons follow.

Fig.5 One-layer neural network

In this network, each element of the input vector p is connected to each neuron input through the weight matrix

W. The ith neuron has a summer that gathers its weighted inputs and bias to form its own scalar output n(i). The various

n(i) taken together form an S-element net input vector n. Finally, the neuron layer outputs form a column vector a. The

expression for a is shown at the bottom of the figure. Note that it is common for the number of inputs to a layer to be

different from the number of neurons (i.e., R is not necessarily equal to S). A layer is not constrained to have the number

of its inputs equal to the number of its neurons. The input vector elements enter the network through the weight matrix

W. Note that the row indices on the elements of matrix W indicate the destination neuron of the weight, and the column

indices indicate which source is the input for that weight. Thus, the indices in w1, 2 say that the strength of the signal

from the second input element to the first (and only) neuron is w1, 2.

 Kumar, International Journal of Advanced Research in Computer Science and Software Engineering 4(8),

August - 2014, pp. 703-711

© 2014, IJARCSSE All Rights Reserved Page | 706

Fig.6 R-input one-layer network

F. Inputs and Layers

To describe networks having multiple layers, the notation must be extended. Specifically, it needs to make a

distinction between weight matrices that are connected to inputs and weight matrices that are connected between layers.

It also needs to identify the source and destination for the weight matrices. We will call weight matrices connected to

inputs input weights; we will call weight matrices connected to layer outputs layer weights. Further, superscripts are used

to identify the source (second index) and the destination (first index) for the various weights and other elements of the

network.

Fig.7 One layer multiple input network

G. Multiple Layers of Neurons

A network can have several layers. Each layer has a weight matrix W, a bias vector b, and an output vector a.

To distinguish between the weight matrices, output vectors, etc., for each of these layers in the figures, the number of the

layer is appended as a superscript to the variable of interest. You can see the use of this layer notation in the three-layer

network shown next, and in the equations at the bottom of the figure.

Fig.8 Three layer neural network

The network shown above has R1 inputs, S1 neurons in the first layer, S2 neurons in the second layer, etc. It is

common for different layers to have different numbers of neurons. A constant input 1 is fed to the bias for each neuron.

Note that the outputs of each intermediate layer are the inputs to the following layer. Thus layer 2 can be analyzed as a

one-layer network with S1 inputs, S2 neurons, and an S2 × S1 weight matrix W2. The input to layer 2 is a1; the output

is a2. Now that all the vectors and matrices of layer 2 have been identified, it can be treated as a single-layer network on

its own. This approach can be taken with any layer of the network. The layers of a multilayer network play different

roles. A layer that produces the network output is called an output layer. All other layers are called hidden layers. The

three-layer network shown earlier has one output layer (layer 3) and two hidden layers (layer 1 and layer 2). Some refer

to the inputs as a fourth layer. The matlab toolbox does not use that designation. The architecture of a multilayer network

with a single input vector can be specified with the notation R − S1 − S2 −...− SM, where the number of elements of the

input vector and the number of neurons in each layer are specified.

 Kumar, International Journal of Advanced Research in Computer Science and Software Engineering 4(8),

August - 2014, pp. 703-711

© 2014, IJARCSSE All Rights Reserved Page | 707

Fig.9 Abbreviated notation of three-layer network

Multiple-layer networks are quite powerful. For instance, a network of two layers, where the first layer is

sigmoid and the second layer is linear, can be trained to approximate any function (with a finite number of

discontinuities) arbitrarily well.

V. IMPLEMENTATION AND TESTING

 The proposed neural network is implemented on an Intel Atom Dual Core Processor using MATLAB 7.12, and

several compound images of various sizes were used to demonstrate the performance of the proposed system. The

classified 8x8 blocks of Computer Screen Image are tested by using precision rate and recall rate. The recall rate is

defined as the ratio of correctly detected background/text/graphics blocks to the sum of correctly detected

background/text/graphics blocks plus false negatives. False negatives are those blocks in the image which are actually

text characters, but have not been detected by the algorithm. The precision rate is defined as the ratio of correctly

detected background/text/graphics blocks to the sum of correctly detected blocks plus false positives. False positives are

those blocks in the image which are actually not characters of a text, but have been detected by the algorithm as text

blocks.

Table.1 Precision and Recall rates for neural network based block classification algorithm

Image Mode Background Text Graphics

 PR RR PR RR PR RR

Ch1.jpg T 100 100 100 100 100 100

Ch1.jpg S 100 100 100 100 100 100

Ch2.jpg S 100 100 100 100 100 100

Ch3.jpg S 100 100 100 80 97.436 100

Ch3.jpg T 100 100 100 100 100 100

Ch3.jpg S 100 100 100 100 100 100

Ch4.jpg S 100 100 100 100 100 100

Ch5.jpg S 100 100 100 100 100 100

Ch6.jpg S 100 100 100 93.75 96 100

Ch6.jpg T 100 100 100 100 100 100

Ch6.jpg S 100 100 100 100 100 100

A. Functional testing

Functional tests at the system level are used to ensure that the behavior of the system adheres to the

requirements specification. Functional tests are black box in nature. The focus is on the inputs and proper outputs for

each function. Improper and illegal inputs must also be handled by the system. System behavior under the latter

circumstances tests must be observed. All functions must be tested.

B. Performance testing

 Performance testing is used to determine the speed or effectiveness of a computer, network, software program

or device. The training time and number of iterations is used during training to evaluate the performance of a neural

network.

Table.2 Performance of neural networks MS_Net1 and MS_Net2 during training

Image
Number of iterations during training

Training Time
MS_Net1 MS_Net2

Ch1.jpg 68 16 32.687927

Ch3.jpg 25 9 16.095989

Ch6.jpg 9 13 14.910167

 Kumar, International Journal of Advanced Research in Computer Science and Software Engineering 4(8),

August - 2014, pp. 703-711

© 2014, IJARCSSE All Rights Reserved Page | 708

VI. CONCLUSION AND FUTURE ENHANCEMENT

A. Experimental Results

The proposed neural network is implemented on an Intel Atom Dual Core Processor using MATLAB 7.12, and

several compound images of various sizes were used to demonstrate the performance of the proposed system. First, it

was found that the system worked with 100% accuracy during training mode. For a similar compound image, the system

was able to achieve over 95% accuracy during simulation mode. Furthermore, any inaccurate results can be corrected via

training and one can expect nearly 100% accuracy in simulate mode.

B. Future Enhancement

For the proposed neural network based algorithm, accuracy for a similar compound image was over 95%

accuracy during simulation mode. Future work is to be done to achieve same level of accuracy for non-similar compound

images as well. This can be achieved by adding more hidden layers to the neural network.

ACKNOWLEDGEMENT

I sincerely thank the Management, Director, Deputy Director of JIS Group for their extended support in

completing the project successfully.

BIOGRAPHY

Prof S.Kumar, Department of Computer Science and Engineering, JISCE, Kolkata is one of the renowned

academicians in the field of engineering education. He has 16 years of teaching and research experience, including 6

years of research experience. He received his doctorate and graduations from premier and reputed universities of

engineering in India. He has been associated with more than 10 top universities of Asia both directly and indirectly. He

has completed many research projects in digital image processing, network security and digital signal processing.

Table.3 Images used for testing Precision and Recall rate

ch1.jpg

ch2.jpg

ch3.jpg

ch4.jpg

ch5.jpg

ch6.jpg

 Kumar, International Journal of Advanced Research in Computer Science and Software Engineering 4(8),

August - 2014, pp. 703-711

© 2014, IJARCSSE All Rights Reserved Page | 709

Fig.10 Neural network 1 being trained

Fig.11 Neural network 2 being trained

Fig.12 Segmented grey-scale image of „ch1.jpg‟

 Kumar, International Journal of Advanced Research in Computer Science and Software Engineering 4(8),

August - 2014, pp. 703-711

© 2014, IJARCSSE All Rights Reserved Page | 710

Fig.13 Blocks classified as Background

Fig.14 Blocks classified as Text

Fig.15 Blocks classified as Graphics

 Kumar, International Journal of Advanced Research in Computer Science and Software Engineering 4(8),

August - 2014, pp. 703-711

© 2014, IJARCSSE All Rights Reserved Page | 711

Fig.16 Runtime for project in train mode using „ch1.jpg‟

REFERENCES

[1] Florinabel D J, Juliet S E, Dr Sadasivam V, Efficient Coding of Computer Screen Images with Precise Block

Classification using Wavelet Transform. Volume 91 May 2010.

[2] Gonzalez R C, Woods R E and Eddins S L. „Digital Image Processing using MATLAB‟. Prentice Hall, Upper

Saddle River, NJ, 2004.

[3] Keslassy I, Kalman M, Wang D and Girod B. „Classification of Compound Images based on Transform

Coefficient Likelihood‟. Proceedings of International Conference on Image Processing, vol 1, October 2001.

[4] Mallat S. „A Wavelet Tour of Signal Processing‟. Second Edition, Academic Press, 1999.

[5] A. Said and A. Drukarev, “Simplified segmentation for compound image compression”, Proceeding of ICIP‟

2009, pp.229-233.

[6] H. Cheng and C.A. Bouman, “Multiscale Bayesian segmentation using a trainable context model” IEEE

Trans.Image Processing, vol. 10, pp. 511–525, April 2001.

