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Abstract -Optimization is a discipline of dealing with those kinds of problems where one has to minimize or maximize 

one or more objectives that are functions of some integer or real variables without exploiting the given constraints. 

The Single objective and multi-objective optimization problem is to optimize a problem consisting of single objective 

function only and multi-objective functions. The optimization techniques have a major role in enhancing the 

efficiency of any domain in science and engineering. For decades scientists are researching to emerge out with 

modified and faster techniques. According to the literature it has been seen that various numerical and search 

techniques have played a major role in solving optimization problems. The paper presents a survey on various 

variations of genetic approaches that have been applied to solve single-objective and multi-objective optimization 

problems. 

 

Keywords- single objective optimization problem, genetic algorithm, multi-objective optimization problem, 

numerical methods, objectivization. 

 

1.       Introduction 

The optimization is a significant tool in analysis of physical system and decision science. This is very much related to our 

real life problems. For instance, airline companies does scheduling in order to minimize the cost. Manufacturers aim for 

maximizing the efficiency in the design and various operations of their production sequence. Nature optimizes. Physical 
systems tend to reach a state of minimum energy. The molecules in any isolated chemical system tend to react with each 

other till total potential energy of their electrons is  minimized. The rays of light follows path through which the 

travelling time gets minimized. Optimization came into existence in 1940s, when George Dantzig used some 

mathematical techniques and generated programs for scheduling timetables for military application. Today, optimization 

consists of wide variety of techniques from Artificial Intelligence, fuzzy math, operations research and computer science. 

In optimization problems, solutions are needed to be found which are optimal or near-optimal with respect to some 

desired aim.  Usually, the optimization problems are not solved in just one step, rather a sequence of steps are to be 

followed for problem solving. Commonly used steps are to recognize and define problems, construct and to solve 

models, and evaluate and to implement solutions. The steps include a) to check for the need of optimization b) Choosing 

design variables c) Formulating constraints d) Formulation of objective function e) setting up variable bounds f) choosing 

an optimization algorithm g) obtaining solution or solutions. 
  The objective [2] depends on certain characteristics of the system, called variables or unknowns. The aim is to 

find values of the variables that will optimize the objective. Generally the variables are restricted, or constrained, in these 

optimization problems. For instance, quantities such as electron density in a molecule and the interest rate on a loan can 

never be negative [2]. The decision variables may get values from discrete sets, bounded and additional constraints on 

basic resources, such as capital, labour, or supplies, restricting the possible alternatives that are taken feasible [3]. 

Combinatorial optimization problems are concerned with the efficient allocation of limited resources to meet 

goals. Possible objectives of a planning or optimization process are either to find an optimal solution of the problem or to 

find out a solution that is better than some predefined threshold (the current solution). In this paper the optimization 

problems which are relevant for modern heuristics are considered. Two important properties of optimization are 

considered 1) locality and 2) decomposability. The locality of a problem is exercised by local search methods, whereas 

the decomposability is taken care of by recombination-based search methods. There are mainly two types of classical 
optimization techniques namely: 1) Single-variable optimization 2) Multi-variable optimization. The multi-variable 

optimization is further divided into three parts named as: i) with no constraints ii) with equality constraints iii) with 

inequality constraints.  

In single-objective optimization (SOO) problem deals with the maximization or minimization of the objective 

function based upon a single variable given a constraint or an unconstrained problem. The SOO problems have a single 

variable in the given objective function. The function may vary according to the different values of that variable. The 

function may have i) Relative or Local Minimum ii) Relative or Local Maximum iii) Absolute or Global Minimum iv) 

Absolute or Global Maximum. The applications of SOO are related to less complex real time problems. However, at 

small levels too optimization is needed. 

http://www.ijarcsse.com/


Punia  et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(7), 

July - 2013, pp. 1014-1020 

© 2013, IJARCSSE All Rights Reserved                                                                                                           Page | 1015 

 

In Multi-objective (or multi-criteria or multi-attribute) optimization (MOO), two or more conflicting objectives are 

simultaneously optimized with respect to a given set of constraints. Although, in real-world problems many times 

improvement in one objective leads to the degradation of another. The applications of MOO can be easily seen in the 
field of network analysis, aircraft design, bioinformatics, oil and gas industry, automobile design, product and process 

design and many more fields. Summing up, the optimization problems have the following characteristics [3]: 

 Availability of different decision alternatives. 

 Number of available decision alternatives limited by additional constraints. 

 Different effect by each decision alternative on the evaluation criteria. 

This paper is categorized into the following three sections:  

Section I)Problem Formulation. Section II) Description of various approaches on single objective and multi-objective 

optimizarion.  

Section III) Conclusions. 

 

2.        Problem Formulation 
The optimization problems may be categorized into Single Variable and Multi-Variable Optimization problems.  

2.1 Single objective optimization problem 

A single-objective optimization problem (SOOP) has the objective function (f (x’)), which must be minimized or 

maximized and a number of constraints (g (x’)). Equation (1) shows the formula of the SOOP in its general form. 

 

               minimize f (x’) 

               s.t.           g j(x’) ≥ 0                  where ( j = 1,…..,m)                                   (1)     

              x’ ∈ X ⊂Rn              

where x’ is a vector of n decision variables, x’ = (x1, x2,……..,xn)
T , and X represents a feasible region. 

 

2.2 Multi-objective optimization problem 
Similarly, multi-objective optimization problems (MOOP) with a number of objective functions are shown in equation 

(2). 

 

(f (x’) = (f1 (x’); f2 (x’),……, fk (x’))T ) can be stated as follows: 

 

minimize f (x’) = (f1 (x’), f2 (x’),……, fk  (x’))T 

s. t.          gj (x’) ≥ 0                  where ( j = 1,……,m)                                                                    

(2) 

                                x’ ∈ X ⊂Rn 

 

The scalar concept of ―optimality‖ cannot be applied directly in the multi-objective model. Thus the notion of Pareto 

optimality has to be entertained. Essentially, a vector x∗ ∈ S is said to be Pareto optimal for a multi-objective  problem if 

all other vectors x ∈ S have a higher value for at least one of the objective functions fi, with i = 1, . . . ,n, or have the same 

value for all the objective functions.  

 

The formal definitions for multi-objective optimization problem are as following [4]: 

 A point x∗ is said to be a weak Pareto optimum or a weak efficient solution for the multi-objective problem if and only 

if there is no x ∈ S such that fi(x) < fi(x∗
 ) for all i ∈ {1, . . . ,n} . Function f(x) is said to have local or relative minimum 

at x as in figure 1. 

 A point x∗ is said to be a strict Pareto optimum or a strict efficient solution for the multi-objective problem if and only 

if there is no x ∈ S such that fi(x) ≤ fi(x∗
 ) for all i ∈ {1, . . . ,n}, with at least one strict inequality. Function f(x) is said 

to have relative or local maximum at point x as in figure 1. 

 

 
Fig 1: Function f(x) having local, global maximum and local, global minimum at point x. 
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3.          Techniques for Optimization 

There are a few common techniques which are common to both single and multi- objective optimization problems. 

However there are some advanced techniques which are applied to multi-objective optimization problems as these 

problems contain multi-dimensional objectives to be satisfied. As found in literature (in figure 2) the different 
optimization techniques can be broadly classified into following three categories [4]: 

• Calculus-based techniques or Numerical methods. 

• Enumerative techniques. 

• Random techniques.  

. 

 

 
Fig. 2 The different search and optimization techniques [4] 

 

Calculus methods, also known as numerical methods use a set of necessary and sufficient conditions which must be 

satisfied by the solution of the optimization problem [4].Numerical methods further divided into direct and indirect 

methods. Direct search methods deals with hill climbing in the function space by moving in local gradient direction. 

Whereas in indirect methods the gradient of the objective function is set to zero and thus solution is get by solving these 

set of equations. All the calculus based methods assume strictly the existence of derivatives and are local in scope too. 

These constrains limit their application in real-world problems; however in small class of unimodal problems these can 

be efficiently used. Enumerative techniques tends to evaluate each and every point  of the finite, or discrete infinite, 
search space to sought optimal solution[4]. A well-known example of enumerative search technique is dynamic 

programming. Thus in order to search each and every point enumerative needs to break down the problems even of 

moderate size and complexity into smaller divisions. 

Guided random search techniques are based on the concept of enumerative methods only but with the use of 

additional information about the search space in order to seek the potential regions faster [4].Guided is further 

categorized into single-point and multi-point search, means whether it is searching just with one point or with several 

points at a given time. For single-point search technique, simulated annealing is widely used. It uses thermodynamic 

evolution in order to find states of minimum energy. For multi-point search, where random choice is used as a tool to 

guide through a highly explorative search space, genetic algorithms are in trend. They are basically used assuming that a 

near-optimal solution will be accepted; given the search space is huge, noisy, multimodal as well as discontinuous. 

 
3.1 Overview of Genetic Algorithms (GAs) 

Gas are efficient, self-adaptable, self-repairable and robust, nature inspired search and optimization tool. GAs performs 

well in large, complex and multimodal search space. GAs are modelled based upon the natural genetic principles where 

the potential solution is encoded in structures known as chromosomes. These make use of problem or domain dependent 

knowledge to search potential and promising areas; also called fitness function, in search space. Each individual or 

chromosome has a fitness value associated with it, which describes its goodness compared to other individuals in the 

current population with respect to the solution. The genetic operators such as selection, crossover and mutation are also 

inspired by the nature and are applied to chromosomes in order to yield better and potential solutions. The sequence of 

steps taken in a GA to solve any optimization problem is shown in figure 3. GAs are adaptive computational tools 
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modelled on the mechanics of nature. These efficiently exploit historical information to guess newly upcoming offspring 

with improved performance. Genetic algorithms are heuristic search methods means it estimates the solution, which can 

be used for both solving problems and modelling evolutionary systems.   

 
GAs are preferred when the search space is huge, discontinuous, multi-dimensional, multi-modal and noisy. Whereas the 

classical gradient search techniques are applied where there are tight constraints associated with the given problem. GAs 

have been found to outperform both the gradient descent method and various forms of random search as literature shows 

[4, 9, 12, 13].  

 

 
Fig 3: Basic steps of GA 

 

3.1.1 Genetic Algorithms: Basic Principles and Features-Based on the theory of genetics, the GA encodes each 

individual in the population with a chromosome [8]. This encoding represents the parameters for the objective function 

being optimized. There are several different techniques for encoding parameters, performing the selection and the 
alteration stages of the algorithm. The alteration stage is separated into Crossover and Mutation [5]. A GA uses a highly 

abstract version of evolutionary processes to evolve solutions to some given problems. Each GA operates on a population 

of given problems. Each GA operates on a population of artificial chromosomes. These are strings in a finite alphabet 

(usually binary). Each chromosome represents a solution to a problem and has fitness, a real number, which is a measure 

of the quality of the solution to the particular problem. GA starts with a randomly generated population of chromosomes 

then carries out a process of fitness-based selection and recombination to produce a successor population, the next 

generation [6]. During recombination, selecting parent chromosomes and their genetic material is recombined to produce 

offspring chromosomes. Then these are then passed to the successor population. As this process is iterated, a sequence of 

successive generations evolves and the average fitness of the chromosomes tends to increase until some stopping 

criterion is reached. In this way, a GA ―evolves‖ a best solution to the given problem [6]. The information transfer is 

done from one generation to next through the breeding of the trial solutions selected on the basis of their fitness, and that 

is why the crossover i defines the defining feature of any GA [8]. The combined effect of crossover and fitness based 
selection on any population of strings encoded trial solutions basically helps to enhance the occurrence frequency of 

substrings to further convey their decoded trial solution  above-average fitness value, at a rate proportional to difference 

between the average fitness of all the trial solutions and the average fitness of whole population. 

The features of GA which differentiate it from other search methods are as given below: 

 GA works with coding of the parameter set, and not with the parameters itself. 

 GA starts searching from a population consists of possible solutions, and does not iterate on single solution. 

 GA does not use derivatives or other auxiliary information rather uses objective function information. 

 GA does not use deterministic rules rather probabilistic transition rules. 

 

A system of nonlinear equations are solved using [5] genetic algorithm techniques. To achieve this propose Gauss-

Legendre integration technique is used first to solve the system of nonlinear equations and then GA is used to find the 
results without converting the nonlinear equations to linear equations. The standard coding scheme is used to accomplish 

the goal. Hence, the parameters of the search problem are represented as bit strings. The obtained results are confirmed 

with the results obtained from numerical methods and hence it is shown that GA is an efficient and effective approach to 

solve the systems of nonlinear equations that arise in the implementation of Gauss-Legendre numerical integration. 

The paper [9] presented a two-space genetic algorithm and also suggested that there is a general technique to 

solve minimax and robust discrete optimization problems. Robust discrete optimization is a technique for structuring the 

uncertainty in decision-making process. The goal is to find out a robust solution that has the best worst-case performance 

over a set of possible scenarios. The proposed algorithm maintains two populations where the first population represents 
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solution and the second population represents scenarios. Here the individual in one population is evaluated with respect 

to individuals in the other population. Both the populations evolve simultaneously and they converge to a robust solution 

and its worst-case scenario. The minimax problems occur in many domains thus the given algorithm has a wide variety 

of applications. The GA is quite useful in solving two-space minimax problem in a wide-case scenario. In this paper to 
illustrate the potential of two-space GA, a parallel machine scheduling problem with uncertainty in processing time is 

solved. For this particular problem, good lower bounds are found and thus algorithm’s performance is evaluated. The 

results confirmed that a two-space genetic algorithm is a very suitable technique for robust and discrete optimization 

problems. Turkcan [10] used PSGA (Problem search genetic algorithm) for multi-objective optimization. In multi-

objective search, the key issues are guiding the search towards the global Pareto set and maintaining diversity. Here a 

new fitness assignment method is proposed to find a uniformly distributed, well-diversified set of solutions that are very 

close to the global Pareto set. A multi-objective optimization (MOP) problem formulation is stated as:  

  Min f(x) = (f1(x), f2(x),….,,fn(x))  

  s.t.  x∈  X 

where x is a vector of discrete decision variables and X is a set of feasible solutions. As the objectives conflict with each 

other, a number of solutions known as Pareto-optimal or efficient solutions are found. A real world application of solving 

tool management and scheduling problems simultaneously in flexible manufacturing systems (FMS) is taken as the 
problem definition. The proposed fitness assignment method is taken as a combination of non-dominated sorting based 

method which is mostly used in multi-objective optimization literature and aggregation of objectives method which is 

popular in the literature of operation research. With the use of PSGA there is no need to do feasibility check hence 

reducing the significant amount of computation time. The PSGA is applied to single objective optimization problems. 

The aim in single objective optimization problems is to find a single solution giving the minimum objective function. 

PSGA was proposed by Storer et al.(1992). It is a local search method which provides a new neighbourhood structure 

defined in the space of possible problem data perturbations. The proposed method, NSAPV, is a composite measure and 

gives higher fitness values to the non-dominating solutions which are closer to the global Pareto-optimal set, have better 

aggregated objective function value and less number of neighbors in objective space [9]. A system of linear equations is 

solved using GA [11] since it is difficult to describe the solution set of a linear system with infinitely many solutions. A 

system of linear equations is a collection of two or more equations with the same set of unknowns. To avoid the 
disadvantages of solving large system of linear equations such as inversion of large matrixes, rounding errors, GA is 

effective and presents an efficient approach to solve the system of linear equations. The coding scheme used is standard 

one and the parameters of the search space are represented as bit strings.  The solution obtained is similar to analytical 

one. The concept of Hydroinformatics is discussed in paper [12]. This field includes water supply management, design of 

water distribution networks and systems, water resources, water supply management, watershed water quality 

management, waste water management, irrigation scheduling. In paper the evolutionary algorithms have been described 

as a special case of a population based approach. The efficiency of EAs in solving optimization problems has been 

outlined. The ability to handle mixed type of variables, non-linear constraints, customizing for solving different classes 

of problems efficiently, and finding multiple trade-off optimal solutions in the presence of multiple conflicting objectives 

are some of the commonplace in the field of hydroinformatics which have been discussed in the paper.  

In paper [13] the focus is on the study of evolutionary algorithms for solving multi-objective optimization 

problems with a large number of objectives. The proposed algorithm dynamical multi-objective evolutionary algorithm 
(DMOEA) is compared with the already existing algorithms for solving multi-objective optimization problems. A new 

definition of optimality (named as L-optimality) is also proposed which not only considers the number of improved 

objective values but also considers the values of improved objective functions but also takes into account the value of 

improved objective functions if all the objective functions have the same importance. The Simulations and comparative 

experiments indicated that the newly developed algorithm MDMOEA can converge to the true L-optimal front and it 

maintains a widely distributed set of solutions. However, even if it is proved that L-optimal solutions are subsets of 

Pareto-optimal solutions; even then L-optimal solutions cannot be obtained only by choosing from Pareto-optimal 

solutions, which utilize MOEAs based on the Pareto-dominance concept. 

The paper [14] presents two new approaches for transforming single-objective problem into a multi-objective 

problems. The multi-objectivization approach is used to translate SOOP into MOOP and then applies EMO. The 

advantages of multi-objectivization such as reduction of the effect of local optima, increasing the search path to global 
optimum, or making the problem easier. The two new multi-objectivization approaches based on addition of new 

objectives are as: 1) Relaxation of the constraints of the problem. 2) Addition of noise to the objective value or the 

decision variables. These new approaches give more freedom to explore and a reduced likelihood of getting trapped into 

local optima.  The characteristics and effectiveness of the proposed approaches  are investigated by comparing the 

performance on single-objective problems and multi-objective versions of those same problems. Using numerical 

examples, it is showed that the multi-objective versions produced by relaxing constraints are providing good results and 

the addition of noise can obtain better solutions when the function considered is multimodal and separable. 

The authors [15] proposed a new algorithm for multi-objective optimization called ―Neighborhood Cultivation 

GA (NCGA)‖. The recent studies such as SPEA2 or NSGA-II, demonstrated that some of the mechanisms are important 

such as the mechanisms of placement in an archive of excellent solutions, assign of fitness, sharing without parameters, 

selection and reflection the archived solutions to the search population. Not only NCGA includes these mechanisms but 
also the neighborhood crossover. NCGA is compared with SPEA2 and NSGA-II with some test functions and it shows 

that NCGA is a robust algorithm to find Pareto-optimum solutions. The effect of neighbourhood crossover is made clear 
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through the comparison between the case of using neighborhood crossover and the case of using normal crossover in 

NCGA. The authors [16] have suggested a nondominated sorting-based multi-objective EA (MOEA), called 

nondominated sorting genetic algorithm II (NSGA-II). Multi-objective evolutionary algorithms (EAs) which use 

nondominated sorting and sharing have been criticized mainly for the mentioned reasons such as: 1) computational 
complexity  O ( MN3 ) (where is the number of objectives and is the population size); 2) the need for specifying a sharing 

parameter, and 3) nonelitism approach. The proposed algorithm alleviates all the above three difficulties. Particularly, a 

fast nondominated sorting approach with O (MN2) computational complexity is presented. A selection operator is also 

presented that creates a mating pool by combining the parent and offspring populations and selecting the best solutions. 

Simulation results from difficult test problems show that the proposed NSGA-II, in most of the problems, is able to find 

much better spread of solutions and better convergence near the true Pareto-optimal front as compared to Pareto-archived 

evolution strategy and strength-Pareto EA—the two other elitist MOEAs that pay special attention to creating a diverse 

Pareto-optimal front. Furthermore, the definition of dominance is modified in order to solve constrained multi-objective 

problems efficiently and effectively. The simulation results obtained from the constrained NSGA-II on a number of test 

problems, which includes a five-objective seven-constraint nonlinear problem, are matched up with another constrained 

multi-objective optimizer and NSGA-II offered much better performance. 

The authors [17] have presented a new distributed genetic algorithm for multi-objective optimization problems. 
The proposed approach uses island model with a distributed genetic algorithm and an operation is performed for sharing 

Pareto-optimum solutions with the total population. The Pareto-optimum solutions are needed to be derived for designers 

in multi-objective optimization problems. Not only the accuracy but also the diversity of the solutions is needed to be 

high as the Pareto-optimum solutions are the set of optimum solutions that are in relationship of trade-off.  Indexes are 

introduced that can evaluate the performance of the algorithm. The indexes taken are population size, error, coefficient of 

variation and cover rate. These can be applied the problems that have more than three objectives to be achieved. High 

accuracy is achieved by the effect of the distributed population and the high diversity of solutions is achieved by the 

sharing effect. The numerical examples which have more than three functions are taken as test problems to examine the 

effects. In paper [18] proposed a novel parallel hybrid algorithm which combines multi-objective and single objective 

genetic algorithm. The results confirmed that this approach outperforms traditional parallel versions of multi-objective 

genetic algorithm. This algorithm is proposed as the literature shows that the majority of the multi-objective genetic 
algorithms are computationally expensive, thus they are often parallelized. In this paper the single objective (SOGA) 

evolutionary algorithm is combined with multi objective evolutionary algorithm (MOGA) in heterogeneous island model 

and has it has outperformed the traditional island model. The experiments showed that adding SOGA with island model 

can be more effective than adding MOGA island, thus it leads to better utilization of computational resources. Also in 

some of the cases it has reduced the need for function evaluation during evolution, and it leads to the reduction in run-

time of the optimizer.  

 

4.       Conclusion 
The literature shows that the genetic algorithms have grown in popularity to solve various single as well as multi-

objective optimization problems in diverse scientific research subjects. This paper reports few selected examples of great 

optimization work simplification with quite acceptable results. In each and every case, the genetic algorithm is well 

adapted to the considered problems. Various new approaches have been proposed by many authors [12, 13, 14, 15, 16, 
17] to solve the single as well as multi-objective optimization problems. Sometimes single objective problem itself is 

converted to multi-objective problems by adding additional objectives in order to apply multi-objective techniques to the 

translated problem in order to gain better and efficient results [14]. In some cases it is necessary to make an effort to 

parallelize GA (like in [17]) in order to obtain the results of complex problems in less amount of time and cost. However, 

GAs do not demand a previous or additional knowledge (derivatives) of the function being optimized, but it is necessary 

to have an idea that a global optimal exists. Generally, the genetic algorithms are shown as an excellent option for the 

global robust search of an optimal value in non-linear and multi-dimensional functions. 
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