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Abstract- Simulated annealing is a method of finding optimal values numerically. It chooses a new point, and (for 

optimization) all uphill points are accepted while some downhill points are accepted depending on probabilistic 

criteria. For certain problems, simulated annealing may be more efficient than exhaustive enumeration — provided 

that the goal is to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. 

Simulated Annealing is a local search method based on local optimization. In this method each trial solution in the 

solution space has a cost, and the objective is to find a feasible solution of least cost. The method is iterative. In each 

cycle we try to move from the current trial solution S to a neighboring point S' in the solution space in an effort to 

find a better trial solution. Let us assume that the problem is a minimization problem. If cost(S') < cost(S), S' becomes 

the new trial solution; the move from S to S’ is then called a downhill move. If cost(S') > cost(S), S' becomes the new 

trial solution with probability p = exp (-Δ/temp), where temp is a parameter known as the temperature and Δ = cost(S') 

- cost(S); S is retained as the trial solution with probability (1-p). Thus S' can become the new trial solution even when 

its cost is higher than the cost of the current trial solution S; this kind of move from S to S’ is called an uphill move. 

This deliberate choice of an inferior trial solution with a non-zero probability helps to ensure that the procedure does 

not get trapped in a local minimum. By slowly reducing the temperature, the probability p is reduced in the course of 

the iteration as better trial solutions are found. Bin packing problem [1], [2] solves the packing of objects of different 

volumes into a finite number of bins of capacity V in a way that minimizes the number of bins used. The 

approximation algorithm is applied on Multiple Bin Packing Problem in such a way that the algorithm produces the 

minimum number of bin used as a result. 

 

Keyword- One bin packing, multiple bin packing, simulated annealing, best fit problem, first fit decreasing, meta- 

heuristics, constraints (parameters).  

 

1. Introduction: 
. This paper describes a complementary mechanism that attempts to learn the structure of the search space over multiple 

runs of SA on a given problem (Best fit Problem [6]) for one bin packing as well as Multiple Bin Packing. For this, we 

introduced different parameters for one bin packing and also for Multiple Bin Packing. Specifically, we also introduce a 

mechanism that attempts to predict how (un)-promising a SA run is likely to be, based on probability distributions that 

are "learned" over multiple runs. The distributions, which are built at different checkpoints, each corresponding to a 
different value of the temperature (‘temperature’ is a variable which decrements it’s value at each step-as SA has a great 

relation with physics, the variable is termed in this manner) parameter used in the procedure, approximate the cost 

reductions that one can expect if the SA run is continued below these temperatures.  

. 

II. Literature Review 

A. Bin Packing Problem-  

The bin packing problem asks for the minimum number k of identical bins of capacity C needed to store a finite 

collection of weights w1, w2, w3, ... , wn so that no bin has weights stored in it whose sum exceeds the bin's capacity. 

Traditionally the capacity C is chosen to be 1 and the weights are real numbers which lie between 0 and 1, but here, for 

convenience of exposition, I will consider the situation where C is a positive integer and the weights are positive integers 

which are less than the capacity. 
 

B. Simulated Annealing- 

 Simulated Annealing (SA) is a general-purpose search procedure that generalizes iterative improvement approaches to 

combinatorial optimization by sometimes accepting transitions to lower quality solutions to avoid getting trapped in local 

minima. SA procedures have been successfully applied to a variety of combinatorial optimization problems, including 

Traveling Salesman Problems ,Graph Partitioning Problems , Graph Coloring Problems[20], Vehicle Routing 

Problems[15] , Design of Integrated Circuits, Minimum Make-span Scheduling Problems as well as other complex 

scheduling problems, often producing near-optimal solutions, though at the expense of intensive computational efforts. 

The procedures, typically requiring that the procedure be rerun (iterate) a large number of times before a near optimal 
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solution are found. Other names of Simulated Annealing are Monte Carlo Annealing[5], Statistical Cooling[6], 

Probabilistic Hill Climbing[7], Stochastic Relaxation[9], Probabilistic Exchange Algorithm[8] etc. 

C. Problem Definition-  

The problem is categorized into two phases i.e., Phase I & Phase II 
     1) Phase I: The goal is to fit the different weighted objects into a single bin with the least cost function. 

 

     2) Phase II: The goal is to fit the different weighted objects into multiple bins such that minimum number of    bins 

used.  

 

III. Proposed Work: 

A. Proposed Algorithm For Simulated Annealing:  

 

Procedure SA          

{ 

  input a trial solution S; c = cost(S); c* = infinity; freezecount = 0; initialize temp; 

 initialize frzlim, sizefactor, tempfactor, minpercent, tcent; 
 while ( freezecount < frzlim )  

{ 

  changes = trials = 0; 

  while ( trials < sizefactor * N ) 

 {   /* N is determined by the size of the problem */ 

   trials = trials + 1; generate a random neighbour S' of S; 

   c' = cost(S'); Δ = c'- c; 

    if (S' is feasible and cost(S') < c* )  

    { 

   S* = S'; c* = cost(S'); 

    } 
   /* save best feasible solution found so far */ 

   if (Δ < 0) 

    { 

      changes = changes + 1;  c = c'; S = S'; 

 } /* downhill move */ 

   else  

{ /* possible uphill move */ 

    choose a random number r in [0,1]; 

    if ( r <= exp(-Δ/temp) )  

{ 

      changes = changes+1; c = c'; S = S'; 

     } 
 } 

} 

  if  (changes/trials > tcent ) temp = 0.5 * temp;  /* reduce temperature quickly */ 

  else temp = tempfactor * temp; /* reduce temperature slowly */   

   if ( changes/trials < minpercent ) freezecount = freezecount+1; 

  else freezecount = 0; 

 } 

 output the final solution S*; /* S* is a feasible solution of minimum cost */ 

} 

 

IV. Results Analysis: 
A. For One Bin packing- 

B. Table 1: Stress- Testing One Bin Packing NP hard Problem with Simulated Annealing 
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C. Analysis of Approximation Algorithm: 

D. Table 2: Analysis of Approximation Algorithm 

FIRST-FIT Algorithm Analysis of Approximation Algorithms 
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E. For Multiple Bin packing: 

Table 3: Resultant Data 

Trials Max Bin 

Size 

Max Object 

Number 

Minimum 

number of Bin 

Required (OPT) 

Round 1 10 6 4 

Round 2 20 12 6 
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Table3: Work in Jan 2013 [27] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. Conclusions:  

Our work has been accomplished on a single bin of variable sizes with the implementation of simulated annealing on that 

particular bin with least runtime complexity. We have also accomplished our work on multiple bins of variable sizes with 

the implementation of simulated annealing with minimum number of bins used. A future aspect is to implement the 

above problems of 1bin packing as well as multiple bin packing in a 2-dimensional pattern. 
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