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Abstract— A methodology is a formalized approach to implementing Software Development Life Cycle. There are 
different software development methodologies. Each one is unique because of its emphasis on process versus data and 
the order and focus it places on each Software Development Life Cycle (SDLC).  All system methodologies lead to a 
representation of the system concept in terms of processes and data; however they vary in terms of whether the 
methodology focus primarily on business processes or on the data that support the business. Several software 
development methods (such as structured development, object-oriented development and rapid application 
development (RAD)) and associated modelling tools (such as Jackson Design and the Unified Modelling Language) 
have evolved to deal with issue of complexity. While these advances in methodologies and tools have helped to deal 
with the issue of software complexity, all these approaches share common weakness that makes them less than ideal, 
on their own, for the development of high integrity software. In this paper we discussed some factors which affect the 
approaches selected to solve problem and they include scale, quality and productivity, change, Consistency and 
Repeatability. Based on these factors one or a combination of the methods can be applied to develop software that will 
behave reliably and efficiently,  affordable to develop and maintain, as well as satisfy all the requirements that 
customers have defined for them. Three categories of software development methodologies namely Traditional  
(Structured and Rapid Application Development), Agile Methodology and Object- Oriented Methodology (OOM) that 
attempts to balance the focus between process and data were compared. The result of this research reveals that 
selecting a methodology is not simple, as no one methodology is always best. For some projects a combination of 
methodologies will yield a quality product. The selection criteria is based on the following factors; Clarity of User 
Requirements, Familiarity with Technology, System Complexity, System Reliability, Short Time Schedules and
Schedule Visibility. Three points scale (Bad, Good and Excellent) are used to match the suitability of the methods 
against the factors.  
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I. INTRODUCTION
Advances in microchip technology, the growth of internet and so on have drastically increased the demands placed 

upon computer. Software is used not only to provide applications on our desktop PC, or distributed business application 
across a network of machines, but also to control many systems around us. The growth in such embedded software, as it 
is known, is one of the reasons for the high rise in the demand for software in recent years [1].  Ideally all software 
products should be released without errors. But this is far from reality because residual errors in applications are to be 
expected.  It is a common practice for developers of such products to release ‘patches’ for them. Application errors 
become dangerous if the consequence of its failure could result to loss of life or properties. For example errors in 
applications like medical control software, car break system, and air traffic control software. For these kinds of systems, 
the cost of software failure is dangerously high and therefore a much higher degree of confidence in the correctness of 
the software is required. Software engineering is concerned with addressing the challenges in Software development. It is 
defined as the systematic approach to the development, operation, maintenance, and retirement of software. The use of 
the term systematic approach for the development of software implies that methodologies are used for developing 
software which are repeatable. That is, if the methodologies are applied by different groups of people, similar software 
will be produced The key that drives software engineering are Cost, schedule and quality [2]. Cost is the cost of the 
resources used for the system and is dominated by the manpower cost. Schedule is the cycle time from concept to 
delivery and the time should be small. Quality is developing high-quality software that will satisfy user needs.  Building 
high quality software requires that the development be broken into phases of SDLC  (planning. analysis, design, and 
implementation) such that output of each phase is evaluated and reviewed so bugs can be removed. All projects require 
you to gather requirements, model the business needs. and create blueprints for how the system should be built; and all 
projects require an understanding of organizational behavior concepts like change management and team building. This 
is true for large and small projects; custom built and packaged: local and global. These underlying skills remain largely 
unchanged over time, but the actual techniques and approaches that analysts and developers use do change—often 
dramatically—over time [3]. Software Projects still run late and over budget, users often cannot get applications when 
they need them, a greater percentage of the projects are either terminated or abandoned as shown in Figure 1 , and some 
systems still fail to meet important user needs . 



Ifeyinwa et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(6),
June - 2013, pp. 655-665

© 2013, IJARCSSE All Rights Reserved                                                                                                          Page | 656

Fig 1: State of Software Development [4]

The basic problem therefore is to systematically develop software to satisfy the needs of some users or clients. There are 
some factors which affect the approaches selected to solve the problem. These factors are the primary forces that drive 
the progress and development in the field of software engineering and they are Scale, Quality and productivity, 
Consistency and Repeatability and Change.
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Productivity

Change
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Repeatability

Fig 2: Primary Challenges for Software Engineering                                                              
A.Scale                                                                                                                                                                                             

The complexity and size of software systems are continuously increasing. As the scale changes to more complex 
and larger software systems, new problems occur that did not exist in smaller systems (or were of minor significance), 
which leads to a redefining of priorities of the activities that go into developing software. Software requirements is one
such area, to which little importance was attached in the early days of software development, as the emphasis was on 
coding and design. The tacit assumption was that the developers understood the problem clearly when it was explained to 
them, generally informally. As systems grew more complex, it became evident that the goals of the entire system could 
not be easily comprehended. Hence the need for more rigorous requirements analysis arose. Now, for large software 
systems, requirements analysis is perhaps the most difficult and intractable activity; it is also very error-prone. Many 
believe that the software engineering discipline is weakest in this critical area. A fundamental factor that software 
engineering must deal with is the issue of scale; development of a very large system requires a very different set of 
methods compared to developing a small system. In other words, the methods that are used for developing small systems 
generally do not scale up to large systems. An example will illustrate this point. Consider the problem of counting people 
in a room versus taking a census of a country. Both are essentially counting problems. But the methods used for counting 
people in a room (probably just go row-wise or column-wise) will just not work when taking a census. Different set of 
methods will have to be used for conducting a census, and the census problem will require considerably more 
management, organization, and validation, in addition to counting. Similarly, methods that one can use to develop 
programs of a few hundred lines cannot be expected to work when software of a few hundred thousand lines needs to be 
developed. A different set of methods must be used for developing large software. Any large project involves the use of 
engineering and project management. For software projects, by engineering we mean the methods, procedures, and tools 
that are used. In small projects, informal methods for development and management can be used. However, for large 
projects, both have to be much more formal, as shown in Figure 3.

Fig 3: The problem of scale. [2]
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As shown in the figure, when dealing with a small software project, the engineering capability required is low (all you 
need to know is how to program and a bit of testing) and the project management requirement is also low. However, 
when the scale changes to large, to solve such problems properly, it is essential that we move in both directions—the 
engineering methods used for development need to be more formal, and the project management for the development 
project also needs to be more formal.

B. Quality and  Productivity
According to the quality model adopted by international standard on software product quality, software quality 

comprises of six main attributes (called characteristics) [5]. These six attributes have detailed characteristics which are 
considered the basic ones and which can and should be measured using suitable metrics. At the top level, for a software 
product, these attributes can be defined as follows .
1) Functionality: The capability to provide functions which meet stated and implied needs when the software is used. . 

Functionality includes suitability (whether appropriate set of functions are provided,) accuracy (the results are 
accurate,) and security.Security is considered a characteristic of functionality, and is defined as “the capability to 
protect information and data so that unauthorized persons or systems cannot read or modify them, and authorized 
persons or systems are not denied access to them.”

2) Reliability: The capability to maintain a specified level of performance.
3) Usability: The capability to be understood, learned, and used. 
4) Efficiency. The capability to provide appropriate performance relative to the amount of resources used
5) Maintainability: The capability to be modified for purposes of making corrections, improvements, or adaptation.  

Portability: The capability to be adapted for different specified environments without applying actions or means 
other than those provided for this purpose in the product. portability has adaptability, installability etc.

C. Consistency and Repeatability
      A goal of software engineering methods is that system after system can be produced with high quality and 
productivity. That is, the methods that are being used are repeatable across projects leading to consistency in the quality 
of software produced. A software development organization would like to produce consistent quality software with 
consistent productivity. Consistency of performance is an important factor for any organization; it allows an organization 
to predict the outcome of a project with reasonable accuracy, and to improve its processes to produce higher-quality 
products and to improve its productivity. Without consistency, even estimating cost for a project will become difficult. 
This requirement of consistency will force some standardized procedures to be followed for developing software. There 
are no globally accepted methodologies and different organizations use different ones. However, within an organization, 
consistency is achieved by using its chosen methodologies in a consistent manner. Frameworks like ISO9001 and the 
Capability Maturity Model (CMM) encourage organizations to standardize methodologies, use them consistently, and 
improve them based on experience.

D. Change  
     In today’s world change in business is very rapid. It is therefore expected that software supporting businesses should 
respond to the changes in order to achieve the task is meant to do. Rapid change has a special impact on software. 
Therefore, one challenge for software engineering is to accommodate and embrace change. Different approaches are 
used to handle change. Approaches that can produce high quality software at high productivity but cannot accept and 
accommodate change are of little use today—they can solve only very few problems that are change resistant.

II.   The Importance Of Specification
The complexity and size of software systems are continuously increasing. As the scale changes to more complex 

and larger software systems, new problems occur that did not exist in smaller systems (or were of minor significance), 
which leads to a redefining of priorities of the activities that go into developing software. Software requirements is one 
such area, to which little importance was attached in the early days of software development, as the emphasis was on 
coding and design. The tacit assumption was that the developers understood the problem clearly when it was explained to 
them, generally informally. As systems grew more complex, it became evident that the goals of the entire system could 
not be easily comprehended. Hence the need for more rigorous requirements analysis arose. Now, for large software 
systems, requirements analysis is perhaps the most difficult and intractable activity; it is also very error-prone. Many 
believe that the software engineering discipline is weakest in this critical area.

There are basically two reasons for a piece of software to contain error.: either the software does not conform to 
its specification or there are errors or omissions in the original specification. Specification therefore plays a vital role in 
the reliability of the software products. The design, and subsequent implementation, depends on the information in the 
specification, and the testing process relies upon the developers’ understanding of the specification to determine whether 
or not the software is behaving correctly. Misunderstandings in the specification can lead to the delivery of final 
applications that do not match user requirements. For traditional development methods testing aims to locate these 
software errors. Ambiguities in the specification and the limitations of testing can result in errors in the final application. 
Testing is the major quality control measure used during software development. Its basic function is to detect defects in 
the software. During requirements analysis and design, the output is a document that is usually textual and non 
executable. After coding, computer programs are available that can be executed for testing purposes. This implies that 
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testing not only has to uncover errors introduced during coding, but also errors introduced during the previous phases. 
Thus, the goal of testing is to uncover requirement, design, and coding errors in the programs.
A. Limitations of Testing

1. Testing cannot take place until some implementation is available
2. Testing can only help to uncover errors- it cannot guarantee the absence of them.
3. It is always carried out with respect to requirements as stated in the specification. If the specification document is 

in anyway ambiguous it is open to interpretation, and hence misinterpretation.

B.  Informal vs Formal Language for Software Specification
For the majority of software applications in use today, the specification is captured in a mix of natural ( informal) 
language and diagrams. For example the UML notation is used to specify and design systems according to the principles 
of object-oriented development, whereby a system is thought of as being composed of a number of fundamental units 
called objects. There are two important aspects to an object: the attributes ( the information that it holds) and the methods 
or operation ( the thing that it can do). Central to this is the notation of a class, which is the blueprint for all the objects 
belonging to that class. The figure below shows a typical UML class diagram specifying a BankAccount class.

BankAccount

accountNumber:String
accountName:String
balance:Real
deposit (Real)
withdraw (Real): Boolean
currentBalance( ):Real

Fig 4 : A typical UML diagram for the BankAccount class

Often, a diagram such as this is supplemented by a natural language description for each method. For example, the 
withdraw method of the BankAccount class might have its UML specification supplemented with the following natural 
language description.

Withdraw:  receives a request amount to withdraw from the bank account and, if there are sufficient funds in the 
account, meet the request. Returns a Boolean value indicating success or failure of the attempt to withdraw money from
the account.
              There is no doubt that natural language and diagrams such as this, are easy to follow by non-computing experts 
and so provides a good medium for discussions with clients. Unfortunately, they do not have fixed meaning ( fixed 
semantics) from one person to the next and so are open to many different interpretations. For example considering the 
restrictions placed on the method that the requested amount should be withdrawn only ‘…if there are sufficient fund….’ 
What is meant by the term ‘sufficient’? Is it that the bank account must contain at least the amount of money that is 
requested for withdrawal? Or is there a minimum balance that must be maintained? Or is there an agreed overdraft limit?
A Boolean value is returned from this method to indicate success or failure: does a value false indicate that an error has 
occurred or that there was no error? Also the amount to be withdrawn is specified to be a real number; is this to be a 
positive or a negative real number? All of the issues highlighted will obviously be crucial to the correct functioning of 
this method. This method is also incomplete and could be inconsistent with the specification of the rest of the class. A 
specification can be considered incomplete when the behaviour is not completely defined. In this case, the specification 
of the withdraw method describes what should happen when there are ‘sufficient’ funds in the account, but does not 
make clear what should happen when there are insufficient funds. Should the method withdraw as much money as is 
allowed or withdraw no money at all? The danger here is that the incompleteness is overlooked and that assumptions are 
made during design and programming, leading to the delivery of a faulty system. A specification is inconsistence when it 
contains contradiction. For example, an overdraft facility might be specified elsewhere. One interpretation of the 
withdraw method is that without funds in the bank account a given amount cannot be withdrawn. Both behaviours cannot 
be satisfied in an implementation.
               All these amount to the conclusion that the use of these notations alone to describe critical software is not wise. 
To overcome these difficulties, it is desirable to use a specification notation with a fixed, unambiguous, semantics. Such 
notations are known as formal notations, or formal languages. Here a fixed semantics is achieved by defining a language 
in a completely unambiguous way using mathematical framework.

III.   System Development Methodologies 
              All system methodologies lead to a representation of the system concept in terms of processes and data. 
However they vary in terms of whether the methodology focus primarily on business processes or on the data that 
support the business. Categorizing System Development Methodologies in terms of emphasis on process versus data we 
have;

A.
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B. Process-Centered Methodologies
              This focus first on defining the activities( the processes) associated with the system. It uses the process models  
as the core of the system concept. Here analysts focus first on representing the system concept as a set of processes (e.g., 
in Figure 5 creditworthiness score and customer’s history & credit data flow in to the Compute credit risk process, and 
credit risk results are produced as output).

Fig 5: A Simple Model of Bank Credit Risk Management System

C. Data-Centred Methodologies
This focus first on defining the contents of the data storage containers and how the contents are organized. It uses data 
models as  the core of the system concept. For example, analysts concentrates initially on identifying the data that must 
be available to compute credit risk and organizing them into well-defined structures(e.g., customer’s national reference 
number, customer’s bank, branch, creditworthiness score, exposure, value of collateral, guaranteed amount, etc)

D. Object –Oriented Methodologies (OOM)
Object-Oriented concept was made to balance the emphasis between process and data. It utilizes the Unified Modelling
Language (UML) to describe the system concept a collection of self-contained objects, including both data and 
processes. Some UML  tools used are ;

1) Use case diagram: This is used to note the type of users (Actors) of a system and what each type of user does with 
that system  

2) Activity diagram: This shows the work flow of the system; that is, it shows the flow of control from activity to 
activity in the system.   

3) Sequence diagram : This shows the explicit sequence of messages that are passed between objects in the defined 
interaction. They are helpful for understanding real-time specifications and complex use cases. 

4) Class diagram: This is used to define and create specific instances or object. It reflects the classes and relationships 
that are needed for the set of use cases which describes the system.

5) Behavioural State diagram: This examines the behaviour of one class. In order words it shows the different states 
that a single instance of a class passes through during its life in response to events, along with the responses and
actions. A state is a set of values that describes an object at a specific point in time, and it represents a point in an
object’s life in which it satisfies some condition, performs some action, or waits for something to happen. Package 
diagram: This depicts the dependencies between the packages that make up the model.

6) Deployment diagram: This shows the physical architecture of the system. It can also be used to show software 
components being deployed onto the physical architecture.

OOM is good for modelling real-world systems. This is because in modelling real world system, processes and data are 
so closely related that it is difficult to pick one or the other as the primary focus. Based on this lack of congruence with 
the real world, new OOM have emerged that use the RAD- based sequence of SDLC phases but attempts to balance 
emphasis between process and data. The difference between OOM and traditional approaches like structured design is
how a problem is decomposed. In traditional approaches, the problem decomposition is either process - centric or data –
centric, while OOM represent the system concept in terms of process and data. Using Object Oriented Analysis and 
Design methods to develop real-time systems has the potential to produce safer, more reliable and maintainable code. 
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Instead of using functional decomposition of the system, the OOA approach focuses on identifying objects and their 
activities. Using the object -oriented approach, system analysts model information systems by identifying a set of 
objects, along with their attributes and operations that manipulate the object data. Researchers in the object-oriented 
community assert that the OOA approach has many advantages in meeting the requirements of OOP [6].

Here are some of the benefits of the object-oriented approach: 
1) Reduced Maintenance: The primary goal of object-oriented development is the assurance that the system will enjoy a 

longer life while having far smaller maintenance costs. Because most of the processes within the system are 
encapsulated, the behaviours may be reused and incorporated into new behaviours.

2) Real-World Modelling: Object-oriented system tend to model the real world in a more complete fashion than do 
traditional methods. Objects are organized into classes of objects, and objects are associated with behaviours. The 
model is based on objects, rather than on data and processing.

3) Improved Reliability and Flexibility: Object-oriented system promise to be far more reliable than traditional systems, 
primarily because new behaviours can be "built" from existing objects. Because objects can be dynamically called 
and accessed, new objects may be created at any time. The new objects may inherit data attributes from one, or many 
other objects. Behaviours may be inherited from super-classes, and novel behaviours may be added without effecting 
existing systems functions.

4) High Code Reusability: When a new object is created, it will automatically inherit the data attributes and 
characteristics of the class from which it was spawned. The new object will also inherit the data and behaviours from 
all superclasses in which it participates. When a user creates a new type of a widget, the new object behaves 
"wigitty", while having new behaviours which are defined to the system.

D.  Categories of the System Development Methodologies  
              Three major categories of System Development Methodologies in terms of the progression through the SDLC 
phases and emphasis placed on each phase are;

Structured design
Structured design methodologies adopt a formal step-by-step approach to the SDLC that moves logically from one phase 
to the next. This design methodology introduces the use of formal modelling or diagramming techniques to describe a 
system’s basic business processes and follows a basic approach of two structured design categories. It includes waterfall 
development and parallel development.

1) Waterfall development : With waterfall development- based methodologies, the analysts and users proceed 
sequentially from one phase to the next. The two key advantages of waterfall development-based methodologies are, the 
system requirements are identified long before programming begins. Changes to the requirements are minimized as the 
project proceeds.

Fig 6:  Waterfall Development-based Methodology. Adapted from [3]
Advantages

1. Simple goal, simple to understand and use.
2. Clearly defined stages and easy to arrange tasks.
3. Easy to manage. Each phase has specific deliverable and a review.
4. Works well for projects where requirements are well understood.
5. Works well when quality is more important then cost/schedule.

Disadvantages
1. The  design must be completely specified before programming begins
2. Not suitable for complex projects
3. Not suitable for critical software
4. The deliverables are often a poor communication mechanism, so important requirements can be overlooked in the 

documentation
5. Not suitable for projects of long duration because in long running projects requirements are likely to change.
6. Users rarely are prepared for their introduction to the new system, which occur long after the initial idea for the 

system was introduced.
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7. If the project team misses important requirements, expensive post- implementation programming may be needed.
8. Very risky, since one process can not start before finishing the other

2) Parallel development : This methodology attempts to address the long time interval between the analysis phase 
and the delivery of the system. A general design for the entire system is performed and then the project is divided into a 
series of distinct subprojects that can be designed and implemented in parallel.

Fig 7:  Parallel Development-based Methodology. Adapted from [3]

Advantages
1. The schedule time required to deliver a system is shortened. Thus there is less chance of changes in business 

environment causing rework.
Disadvantages

Just like the waterfall, it suffers from the problems caused by lengthy deliverables.
Sometimes the subprojects are not completely independent. This is because design decision made in one 

subprojects may affect another.
The end of the project may involve significant integration challenges.
Not suitable for complex projects as well as critical software

Rapid Application Development (RAD) 
RAD-based methodologies adjust the SDLC phases to get some part of system developed quickly and into the hands of 
the users. Most RAD-based methodologies recommend that analysts use special techniques and computer tools to speed 
up the analysis, design, and implementation phases, such as CASE (computer-aided software engineering) tools. One 
possible subtle problem with RAD-based methodologies is managing user expectations. It includes Phased development, 
prototyping and throwaway prototyping.

Fig 8:  Rapid Application Development Methodology

1)   Phased development: This methodology breaks the overall system into a series of versions that are developed 
sequentially. The team categorizes the requirements into a series of versions, then the most important and fundamental 
requirements are bundled into the first version of the system. The analysis phase then leads into design and 
implementation; however, only with the set of requirements identified for version 1. As each version is completed, the 
team begins work on a new version.
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Fig 9 :  Phased Development-based Methodology. Adapted from [3]

2)    Prototyping: The development of the prototype typically starts when the preliminary version of the requirements 
specification document has been developed. Here, there is a reasonable understanding of the system and its needs and 
which needs are unclear or likely to change. After the prototype has been developed, the end users and clients are given 
an opportunity to use the prototype and play with it. Based on their experience, they provide feedback to the developers 
regarding the prototype: what is correct, what needs to be modified, what is missing, what is not needed, etc. Based on 
the feedback, the prototype is modified to incorporate some of the suggested changes that can be done easily, and then 
the users and the clients are again allowed to use the system. This cycle repeats until, in the judgment of the prototypers 
and analysts, the benefit from further changing the system and obtaining feedback is outweighed by the cost and time 
involved in making the changes and obtaining the feedback. Based on the feedback, the initial requirements are modified 
to produce the final requirements specification, which is then used to develop the production quality system.

Fig 10  : Prototyping-based Methodology. Adapted from [3]

3)    Throwaway prototyping: Throwaway prototyping methodologies are similar to prototyping based 
methodologies. The main difference is that throwaway prototyping is completed during a different point in the SDLC. It 
has relatively thorough analysis phase that is used to gather information and to develop ideas for the system concept.  
Many of the features suggested by the users may not be well understood, and handling these technical issues may be 
challenging. Hence, the focus of the development is to examine features that are not properly understood by analyzing, 
designing, and building a design prototype. The  design prototype  represent a part of the system that needs additional 
refinement, and it contains only enough details to enable users to understand the issues under consideration. Once the 
issues are resolved, the project moves into design and implementation. At this point, the design prototype are thrown 
away, which is an important difference between throwaway prototyping  and prototyping, in which the prototypes evolve 
into the final system . This approach produces more stable and reliable system than the prototype approach but may take 
longer to deliver the final system.
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Fig 11:   Throwaway Prototyping-based Methodology. Adapted from [3]

Advantages
1. Time to deliver is less.
2. Changing requirements can be accommodated.
3. Progress can be measured.
4. Cycle time can be short with use of powerful RAD tools.
5. Productivity with fewer people in short time.
6. Use of tools and frameworks.

Disadvantages
1. Management complexity is more.
2. Suitable for systems that are component based and scalable.
3. Requires user involvement throughout the life cycle.
4. Suitable for project requiring shorter development times.
5. Requires highly skilled developers/designers.
6. High dependency on modelling skills.
7. Inapplicable to cheaper projects as cost of modelling and automated code generation is very high for cheaper 

budgeted projects to befit.
Agile Development

This category focuses on streamlining the SDLC by eliminating much of the modelling and documentation overhead and 
the time spent on those tasks. Projects emphasize simple, iterative application development. This category uses extreme 
programming, which is described next.

1)     Extreme Programming (XP) : The Key principles of XP include continuous testing, Simple coding and close
interaction with the end users to build systems very quickly. After superficial planning process, project team perform 
analysis, design, and implementation phases iteratively as shown in Figure 12

Figure 12 :  An Extreme Programming-based Methodology. Adapted from [3]
Advantages

Promotes teamwork and cross training.
b. Functionality can be developed rapidly and demonstrated.

Resource requirements are minimum.
d. Suitable for fixed or changing requirements

Delivers early partial working solutions.
Good model for environments that change steadily.
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g. Minimal rules, documentation easily employed.
h. Enables concurrent development and delivery within an overall planned context.

Disadvantages
1. Not suitable for handling complex dependencies.
2. More risk of sustainability, maintainability and extensibility.
3. An overall plan, an agile leader and agile Project management practice is a must without which it will not work.

IV. Comparision Of Development Methodology
Selecting a methodology is not simple, as no one methodology is always best. Many organizations have their own standards.
Each methodology is suitable for some context, and the main reason for studying different methodologies is to develop the ability

to choose the proper model for a given project. Using a methodology as the basis, the actual process for the project can 
be decided, which hopefully is the optimal process for the project. The choice of a methodology is influenced by several 
factors: Clarity of the user requirements; familiarity with the base technology; system complexity; need  for system 
reliability; time pressure; and need to see progress on the time schedule [3]. Table 1 summarizes some important 
methodology selection criteria.

TABLE 1                                                                                                                             
CRITERIA FOR SELECTING A METHODOLOGY

Structured 
Methodologies

RAD Methodologies Agile 
Methodolog

ies

Object 
Oriented

Methodologi
es

To Develop 
Systems 
with

Waterfall Parallel Phased Prototypin
g

Throwawa
y 

prototypin
g

XP Object 
Oriented

Unclear 
User 
Requiremen
t

Bad Bad Good Excellent Excellent Excellent Excellent

Unfamiliar 
Technology

Bad Bad Good Bad Excellent Bad Good

Complex 
Systems

Good Good Good Bad Excellent Bad Excellent

Reliable Good Good Good Bad Excellent Good Excellent
Short Time 
Schedule

Bad Good Excellen
t

Excellent Good Excellent Excellent

Schedule 
Visibility

Bad Bad Excellen
t

Excellent Good Good Good

A.    Selecting the Appropriate Development Methodology
1) Clarity of User Requirements: Use Case driven concept of the OOM allows users and analyst to focus on how a user 

will interact with the system to perform single activity. This promotes better understanding and gathering of user 
needs. RAD methodologies of prototyping and throwaway are usually more appropriate when user requirements are 
unclear as they provide prototypes for users to interact with early in the SDLC. 

2) Familiarity with Technology: If system is designed without some familiarity with the base technology, risks increase 
because the tools may not be capable of doing what is needed. Waterfall, Parallel development, Prototyping  and 
Extreme Programming are appropriate when the analyst is familiar with the technology because they do not create 
opportunities to investigate the technology in some dept before the design is complete. Phased development does and 
so is good when technology is unfamiliar to the analyst. Throwaway prototyping explicitly encourages the 
developers to create design prototypes for areas with high risk and therefore is very suitable when technology is 
unfamiliar to the developers.

3) System Complexity: Complex systems require careful and detailed analysis and design and this is the main focus of 
OOM. Object Oriented approach tackles the issue of system complexity with ease. OOM concepts like 
polymorphism, encapsulation, and inheritance taken together allow analysts to break a complex system into smaller, 
more manageable components, to work on components individually, and to more easily put the components back 
together to form a system. Although phased development based methodology enable users to interact with the 
system early in the process, [3] observed that project teams who follow phased development-based methodologies 
tend to devote less attention to the analysis of the complete problem domain than they might if they were using other 
methodologies. Prototyping does not encourage detailed analysis and design and is therefore a bad choice for 
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complex system. Throwaway Prototyping supports detailed analysis and design and so can effectively handle 
complex system. The traditional Structured methodologies is equally good for complex system, though they lack the 
capacity to deliver the system or prototype on time to the users and so there are chances of key issues being 
overlooked.

4) System Reliability: System reliability is usually an important factor in system development. Throwaway prototyping-
based and object oriented methodologies are most appropriate when system reliability is a high priority. This is 
because, their emphasis on iterative and incremental development that undergoes continuous testing through out the 
life of the project leads to producing high quality system that  is capable of meeting users needs. Prototyping-based 
methodologies are generally not a good choice as they lack careful analysis and design phases.

5) Short Time Schedule: RAD-based methodologies are well suited for projects with short time schedules because they
increase speed of development. Waterfall-based methodologies are the worst choice when time is essential as they 
do not allow for easy schedule changes.

6) Schedule Visibility:  Structured design methodologies do not reveal whether a project is on schedule because design 
and implementation takes place at the end of the project. RAD-based methodologies move many of the critical design 
decisions earlier in the project; consequently, this helps project managers recognize and address risk factors and keep 
expectations high.

V.   Conclusion
Software is pervasive. It not only provides applications on our desktop PC, or distributed business application across a 
network of machines, but also control many system around us.  The way people work, the choice they make, and the 
discipline they chose to apply, has more impact on the success of a software project. Developing a high integrity software 
has been a major challenge facing software developers. Research has shown that may software projects have failed and 
the field of software engineering is concerned with developing and maintaining software systems that behave reliably and 
efficiently, are affordable to develop and maintain, satisfy all the requirements that customers have defined for them. It is 
important because of the impact of large, expensive software systems and the role of software in safety-critical 
applications. Failure in safety-critical software could result in harm to people, property or environment. Examples 
include medical control software and air traffic control software. The key that drives software engineering are Cost, 
schedule and quality. The basic problem therefore is to systematically develop software to satisfy the needs of some users. 
Some factors which affect the approaches selected to solve the problem are scale, quality and productivity, Consistency 
and Repeatability and change. High quality and productivity is governed by using good method, using good technology 
and user training. However, comparing between the three approaches: traditional, agile, and object oriented, there is no 
clear answer as which is the best approach since they all have different advantages and disadvantages. The traditional 
approach is perhaps the most straightforward method for systems analysis and design, however, for even smaller projects; 
agile methods may be more desirable. However, if the project's goal is more heavily emphasized on project complexity,
scalability and component reusability, object-oriented approach could be the best choice. This work concludes that the 
choice of a methodology is influenced by clarity of the user requirements; familiarity with the base technology; system 
complexity; need for system reliability; time pressure; and need to see progress on the time schedule. To be successful in 
software projects, the stake holders should critical examined the trade off between different methods and can effectively 
combine methods that that will help achieve the objectives the software is meant  to achieve.
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