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Abstract—This Paper Presents Hesitant Fuzzy Information About Data Sets. Hesitant Fuzzy Linguistic Term Set 

(HFLTS) is based on the fuzzy linguistic Approach that will serve as basis to Increase the flexibility of elicitation of 

linguistic Information. For experimental Classification accuracy results analysis evaluated using the Analytical SAS 

9.0 Software is used. The Experimental Laws of Algebra Results show the proposed approach Best performs. 
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I. INTRODUCTION 

Hesitant Fuzzy Information collection based on Fuzzy logic, Fuzzy sets theory, Intuitionistic fuzzy sets, Fuzzy multi 

sets, fuzzy linguistic approach, uncertainty and model the information etc. In this Paper Hesitant Fuzzy Linguistic Term 

Set (HFLTS) is used to calculating Document Classification Results. 

 
 

 

 

 

 

 

 

 

 

    Fig 1: Hesitant Fuzzy Information collection 

 
H. Becker, “Computing with words and machine learning in medical diagnosis[2],Y.Dong,Y. Xu, and S.Yu, “Computing 

the numerical scale of the linguistic term set for the 2-tuple fuzzy linguistic representation model[5]. D.Dubois and H. 

Prade, Fuzzy Sets and Systems: Theory and Applications [6].Z. P. Fan, J.Ma, and Q. Zhang, “An approach to multiple 

attribute decision making based on fuzzy preference information alternatives[7], D. F. Li,“TOPSIS-based nonlinear-

programming methodology for multi attribute decision making with interval-valued intuitionistic fuzzy sets[18].  

F. Herrera, E. Herrera-Viedma, and L. Mart´ınez, “A fusion approach for managing multi-granularity linguistic terms 

sets in decision making[10], F. Herrera and L. Mart´ınez, “A 2-tuple fuzzy linguistic representation model for computing 

with words[12].S. Kundu, “Min-transitivity of fuzzy leftness relationship and its application to decision making [16], H. 

Ishibuchi and H. Tanaka, “Theory and methodology: Multi objective programming in optimization of the interval 

objective function [14].G. Bordogna and G. Pasi, “A fuzzy linguistic approach generalizing Boolean information 

retrieval: A model and its evaluation[4],  J. Kacprzyk and S. Zadrozny, “Computing with words is an implementable 

paradigm: Fuzzy queries, linguistic data summaries, and natural-language generation[15], H. Ishibuchi, T. Nakashima, 
and M. Nii, Classification and Modelling With Linguistic Information Granules: Advanced Approaches to Linguistic 

Data Mining [13],D. F. Li, “Multi attribute group decision making method using extended linguistic variables[17]. 

P. P. Bonissone, “A fuzzy sets based linguistic approach: Theory and applications [3],J. Ma, D. Ruan, Y. Xu, and G. 

Zhang, “A fuzzy-set approach to treat determinacy and consistency of linguistic terms in multi-criteria decision 

making[19], F. Herrera, E. Herrera-Viedma, and L. Mart´ınez, “A fuzzy linguistic methodology to deal with unbalanced 

linguistic term sets[11],  L. Mart´ınez, “Sensory evaluation based on linguistic decision analysis[20]. 

K.T. Atanassov, “Intuitionistic fuzzy sets[1],   J.M. Garibaldi, M. Jaroszewski, and S. Musikasuwan, “Nonstationary 

fuzzy sets [8],  F. Herrera, S. Alonso, F. Chiclana, and E. Herrera-Viedma, “Computing with words in decision making: 

Foundations, trends and prospects[9] , Computing Vectors Based Document Clustering and  Numerical Result 

Analysis[22],Hesitant Distance Similarity Measures for Document Clustering[21], Hesitant k-Nearest Neighbor (HK-nn) 

Classifier for Document Classification and Numerical Result Analysis[23]. 
The paper is organized as follows. Section-I described the introduction and review of literatures. In Section-II, the 

Hesitant Fuzzy Information is described. In Section-III, Methodology of document Classification accuracy results is 

described. In Section-IV, Experimental results are described. In Section-V, Evaluation measurement is described. Finally, 

we concluded and proposed some future directions in Conclusion Section. 

Hesitant Fuzzy set 

Linguistic Term Set    Dual Set  
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II. HESITANT FUZZY LINGUISTIC TERM SET  
Hesitant Fuzzy Linguistic Term Set: Uncertainty is a problem that occurs when calculating document classification 

results then the best and optimum solution in present time is given by Hesitant Fuzzy Set. Hesitant Fuzzy Set gives new 

computational solution with numerical capability. Hesitant Fuzzy used Linguistic Term Set then it knows Hesitant 

Fuzzy Linguistic Term Set (HFLTS). Linguistic Term Set just like Context Free Grammar (CFG). 

 

A. Theorem 1: (Idempotent  laws)   
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B. Theorem 2: (Identity  laws) 

 

For any Hesitant Fuzzy Linguistic Term Set H
s , we have ( )   i H H
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C. Theorem 3: (Commutative laws) 

 For any two Hesitant Fuzzy Linguistic Term Set H
s  and 1H

s
 ,we have  1 1( )   i H H H H

s s s s
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1H H
s s
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Hence, from 3 and 4 
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D. Theorem 4: (Associative laws)  
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E. Theorem 5: (Distributive laws) 

If any H
s , 1H
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Theorem 6: (De-Morgan‟s laws)  
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III.  METHODOLOGY  

 

In the Classification of document different the steps are used. The steps are as follows:  

A. Data Collection: In this phase collect relevant documents like e-mail, news, web pages etc. from various 

heterogeneous sources. These text documents are stored in a variety of formats depending on the nature of the data. 

The datasets are downloaded from UCI KDD Archive. This is an online repository of large datasets and has wide 

variety of data types.  

B. Classification Method: Initial step is to complete review of literature in the field of data mining. Next step is a 

detailed survey of data mining and existing Algorithms for Classification. In this area some work done by various 
researchers. After studying their work, it would be attempted to find the Classification algorithm. 

C. Classification Process: Algorithms develop for Classification Process. Classification Process means transform 

documents into a suitable determined in classes for the Classification task. In Classification Process we performed 

Different tasks. Optimized classification will also be studied. The real data may be great source for the Classification. 
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D. Classification Results: In this Experiment we calculate Hesitant Fuzzy Linguistic Term Set Based Document 
Classification. Hesitant Fuzzy Linguistic Term Set Based Document Classification is efficient and accurate compare 

to other Classification method. 

 

IV.      EXPERIMENTAL RESULTS 

In this Experiment we calculate Hesitant Fuzzy Linguistic Term Set (HFLTS) based accuracy percentage for laws of 

Algebra of Sets. 

TABLE I 

ACCURACY PERCENTAGE OF LAWS OF ALGEBRA OF SETS  

 

 

    
Fig. 2 Accuracy percentages of Laws of Algebra of Sets  
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