
 

© 2013, IJARCSSE All Rights Reserved                                                                                                            Page | 829 

                            Volume 3, Issue 4, April 2013                                    ISSN: 2277 128X 

International Journal of Advanced Research in 
  Computer Science and Software Engineering 
                                                      Research Paper 
                                Available online at: www.ijarcsse.com 

 Testing Techniques for COTS – A Survey                                    
Jagdeep singh                                       Shvivani Goel 

CSED, Thapar University, India.             CSED, Thapar University, India. 

 

Abstract— The use of Commercial of the Shelf (COTS) based product in the software development has been proposed 

a way of reducing both development and implementation cost. There are a large number of COTS products available 

in market. The features provided by COTS and cost associated with them is an important consideration in selecting 

COTS. So there is a need of evaluation of COTS products before procuring them for software reuse. COTS testing is 

best way of evaluating the COTS products. In this paper, a survey of various techniques used for testing COTS is 

presented. The techniques discussed are software wrapping, compatibility and regression testing, contract based 

mutation, boundary value and partition testing, and interface mutation testing. 

 

Keywords— COTS, software testing, interface mutation testing, contract based mutation 

 

I. INTRODUCTION 

The use of COTS product has been increasing in recent year, but their usage has resulted in various new problems. First, 

their source code is rarely available. Even if the source code is available, how a COTS component will behave after 

integration is still a challenging issue[1]. There are many other issues related with COTS, the interfaces and their formats, 

component interaction, compatibility and integration. There are numerous testing techniques proposed for testing of 

COTS product. Jennifer et al. have proposed software wrapping technique in which the component is wrapped with glue 

code and all input and output at interfaces are recorded to understand component behaviour [2]. Leonardo et al. have 

proposed a technique for compatibility and regression testing of COTS-based software that can automatically generate 

compatibility and prioritized test suite based on behaviour models that represent component interaction [3]. Ye Wu has 

proposed black box testing technique based on partition and boundary value analysis [4]. Marcio et al. have proposed 

interface mutation, in which they proposed an approach for integration testing [5]. Ying et al. have proposed contract 

based mutation technique for testing components and it employs high level contract mutation operators [6]. The 

following sections describe all these techniques. 

 

II.  SOFTWARE COMPONENT TESTING TECHNIQUES  

We have identified various COTS testing techniques that are suitable for testing software components. All of these are 

best suited for a particular scenario. The techniques considered for COTS testing are software wrapping technique, 

compatibility and regression testing technique, boundary value and partition testing, interface mutation testing and  

contract based mutation. These are described in the following sections in detail. 

 

A. Software wrapping technique 

This approach helps to gain an understanding that how a COTS component interact with the rest of the system. The key 

goal of this strategy is to deal with COTS component without any dependence on vendor. In this technique there is a 

layer called a wrapper that encapsulate the component. They key idea is to understand whether COTS component is 

interacting with the system or not. Various faults can be injected at the input to see the whether the component detects the 

faulty input. Thus predicting the reliability of software components becomes easy. The wrapper can also be accompanied 

by various mechanisms like monitor, records so that inputs and outputs of the component can be recorded for further 

observation. The key advantage of this approach is not dependent on vendor for evaluating COTS. 

 

 
Fig1. Conceptual view of a wrapper 

http://www.ijarcsse.com/


Singh  et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(4), 

April  - 2013, pp. 829-833 

© 2013, IJARCSSE All Rights Reserved                                                                                                            Page | 830 

B. Compatibility and Regression Testing of COTS 

The data exchanged between software components and system is of great use to identify potential faults. This technique 

first generates compatibility and regression test suites based on data exchanged between components and sequence of 

invocation to component’s interfaces. Compatibility test suite helps in identifying and discarding the software 

components that are compatible with specifications. Regression test suite helps to improve the efficiency of regression 

testing and helps us to identify the potential problems that can occur at integration. This technique is based on inter- 

component behavior model, and these model are automatically derived while testing the previous version of software. 

 
Fig. 2 Usage scenario of compatibility test suites 

 

Compatibility and regression test suites are generated from behaviour models and further behaviour models are generated 

by behaviour capture and test (BCT) technology [7]. BCT is a dynamic analysis technique for generating behaviour 

models. Models are produced by recording the data value exchanged between the component and sequence of invoke 

methods. BCT automatically infer input, output and interaction models for generating behaviour models. 

 

C. Boundary Value Analysis and Partitioning Testing 

In COTS based system all the interaction are done through interfaces. So interfaces are the only point of contact and they 

play a key role in testing COTS components. Equivalence partition testing tries to divide the input domains into k 

different disjoint partitions p1, p2, …,pk, where p1 ∪ p2 ∪… ∪ pk = input domain, and pi ∩ pj = Φ for any i and j where i ≠ 

j . Values from each partition have “all or none” property. If an element is selected for a component and that element fails, 

then all elements from that partition will also fail. Since formal specification usually don’t exist for COTS components, 

so there is no systematic way to generate equivalence partition. If formal specification exists, then partition can be 

automatically derived. 

          But usually faults occur at boundaries, so boundary value is key technique that can expose faults at testing [8]. 

Exhaustive testing is not possible as we cannot execute all the test cases to cover every state. Partition testing reduces the 

test cases and boundary value analysis address test effectiveness, so boundary value testing strategy must be used with 

partition. By analysis of various inputs at interface level of COTS, boundary value analysis technique can be applied to 

better understand the COTS component. 

 
Fig.3 partition reduces the test cases 

 

D. Contract Based Mutation for Testing COTS 

COTS components follow standardized interfaces provided by various component models (COM, CORBA, JAVA 

BEANS) for interaction with system and providing various services. Mutation testing which is proposed by DeMillo[9] 

and Hamlet [10] is the widely accepted criteria in seeding faults for evaluating the quality of software. Ying et al. [6] 

have proposed contract based mutation that is based on idea to apply mutation testing to the contracts supplied with the 

components. Since contracts can be supplied without source code, mutating on the contract does not depend upon vendor 

anymore. This approach does not use the tradition mutation operator, instead mutation is applied on high level contract of 

the component. 

       Design by contract (DBC) is a method to improve software testability and the main motive is to establish contract 

between the provider and user of software component. Contracts define the behavioural feature of component, so if the 

contracts are violated while running, faults can be revealed. DBC usually helps in enhancing the testability and also the 

implementation of component. 



Singh  et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(4), 

April  - 2013, pp. 829-833 

© 2013, IJARCSSE All Rights Reserved                                                                                                            Page | 831 

 
Fig.4 Typical structure of contract’s 

 

Typically, mutants are produced from any program by making small changes to the program. Following type of mutants 

can be produced from contracts. These are contract negation, condition exchange, precondition weakening, post 

condition strengthening and many more. Mutation score can be calculated like the traditional software testing. The idea 

of calculating mutation score remains the same as in traditional software. First calculate the number of mutants killed and 

number of total mutants created. The formula has been show below. 

 

Mutation score= D/(Mc-Ec) 

 

D= number of killed mutants 

Mc= number of contract mutants 

Ec = number of equivalent mutants 

 

Higher the number of mutation score, more reliable is the COTS component. 

 

E. Interface Mutation for integration testing 

Interface mutation is proposed to evaluate the interaction between various modules. It helps to evaluate the test cases for 

a subsystem which consist of two or more components. The key idea of interface mutation is to test interaction between 

units and apply mutant operator at their interfaces such as function calls. The goal of integration testing is to put the units 

in their intended environment and exercise their interaction completely. 

     Various types of techniques have been proposed for testing inter-procedural test set. Haley et al. have classified 

integration error as computational error and domain integration error [11]. Linnenkugel et al. have defined control flow 

and data flow-based criteria [12]. Jin and Offut have proposed coupling based testing technique [13].  

     Interface mutation differs from the above approaches. The use of interface mutation helps us to explore the adequacy 

criteria at integration level. The nature of data exchanged form unit a to unit b can be categorized into four ways. 

1. Data can be passed from unit a to unit b via input parameter (pass by value). 

2. Data can be passed from unit a to unit b or returned to via input/output parameters (pass by reference). 

3. Data can be passed by global variables 

4. Data can be passed through return variables 

 

 
Fig.5 data exchange between two units 

 

The next step is to generate mutants, but mutants in this technique differ from traditional software because small changes 

have to be made at interface level or connection between two units. Various sets of mutation operator can be applied to 

generate wide variety of mutants and check adequacy of test sets. 

 

III. COMPARISON 

Black box testing techniques are applied when source code of COTS is not available, i.e. when the COTS product are 

reused. White box testing techniques are applied when the source code of COTS products is available i.e. when while 

developing the COTS product. A comparison of various testing techniques with their key advantages and their limitations 

has been given in table 1 which also suggests the testing technique suitable for a particular scenario. 

 



Singh  et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(4), 

April  - 2013, pp. 829-833 

© 2013, IJARCSSE All Rights Reserved                                                                                                            Page | 832 

Table 1. Comparison of COTS testing techniques 

Testing Technique Best Suitable for Advantages Limitations 

Software wrapping 

technique 

Blackbox testing of COTS 

components 

No more dependence on 

vendor for testing of 

COTS component. 

It can record only 

behaviour of software 

component based on input 

given and output received. 

Compatibility and 

regression testing 

Regression testing of 

COTS components  

It makes selection of 

software components by 

potentially eliminating 

software components 

that are not compatible 

with the specifications. 

Regression test suites are 

time consuming and 

resource consuming. 

Boundary value and 

equivalence class testing 

Best suited when source 

code of COTS components 

are available 

Boundary value testing 

helps to identify 

potential problems that 

occur at boundaries of 

data types (like integer 

ranges 0 to 32767) and 

equivalence class helps 

in reducing test case as 

exhaustive testing is not 

possible. 

Cannot address all the 

software components 

testing issues because 

most of the times source 

code is not available. 

Contract based mutation 

testing 

Integration  testing used 

when no source code of 

COTS components is 

available 

Capable of testing 

interfaces of COTS that 

follow standardized 

component models 

( COM,DCOM,CORBA) 

through which COTS 

components 

communicate and 

provide services. 

Just testing the interfaces 

through which software 

components 

communicates and 

provides the services does 

not solve the issue related 

with using software 

component when there is 

no source code available 

Interface mutation testing Integration testing when 

source code of COTS 

components is available 

Capable of finding faults 

that can occur when 

components 

communicate with each 

other and the system. It 

addresses the entire 

integration problem that 

might exist when 

software component is 

integrated into the 

system. 

This technique addresses 

the integration issues of 

software components but 

software components are 

still not tested. This 

technique is dependent on 

input output models and 

interaction between 

components. 

 

IV. Conclusion 

In this paper we surveyed a number of techniques that can be used for testing COTS components. Major problem with 

COTS component is that the source code is not available which makes their testing and evaluation a tough task. Software 

wrapping technique is capable of recording the input, output of software components so that fault can be identified and 

software components can become more and more reliable. Compatibility and regression testing solve the issues of 

selection of COTS components when source code is not available. Boundary value analysis address the issues that can 

happen at the boundaries because many faults occur at boundaries like array gets out of bound, range of an integer gets 

exceeded etc. Exhaustive testing is always not possible, so equivalence class partitioning helps us reduce the test cases. 

Interface mutation testing and contract based mutation; both address issues that can occurs at integration of software 

components. Though most of these techniques that we surveyed do not need the source code of COTS and they are not 

even dependent on vendor, still there is need of more techniques that can exploit the full potential of software 

components and promise for better future can be accomplished, where COTS components can be changed like electronic 

circuits. 

 

REFERENCES 

[1]. J.C. Knight, R. W. Lubinsky, J. McHugh, and K.J. Sullivan, “Architectural approaches to information 

survivability,”Technical Report CS-97-27, University of Virginia, Sept. 1997. 



Singh  et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(4), 

April  - 2013, pp. 829-833 

© 2013, IJARCSSE All Rights Reserved                                                                                                            Page | 833 

[2]. Haddox, J.M. and Kapfhammer, G.M., “An approach for understanding and testing third party software 

components”, Reliability and Maintainability Symposium, 2002, pp. 293–299.  

[3]. Leonardo Mariani, Sofia Papagiannakis, and Mauro Pezze, “Compatibility and Regression Testing of COTS-       

Component-Based Software” In Proceedings of the 29th international conference on Software Engineering (ICSE       

2007),  IEEE Computer Society, Washington, DC, USA, pp. 85-95.  

[4]. Ye Wu,www.tuisr.utulsa.edu/iwicss/Black-box_Testing_for_Evolving_COTS-Based_Software.pdf, last accessed  

11  march,2013. 

[5]. Máarcio E. Delamaro, José C. Maldonado, and Aditya P. Mathur, “Interface Mutation: An Approach for 

Integration Testing”, IEEE Transaction on  Software Enggineering 27, 3 ,March 2001, pp. 228-247. 

[6].  Ying Jiang, Shan-Shan Hou, Jinhui Shan, Lu Zhang,Bing Xie,”Contract-Based Mutation for Testing  Components”, 

ICSM, 2005, pp. 483-492. 

[7]. L. Mariani and M. Pezz`e. Behavior capture and test: Automated analysis of component integration. In 

proceedings of the IEEE International Conference on Engineering of Complex Computer Systems, 2005. 

[8]. Hoffman, D., Strooper P. and White, L., “Boundary Values and Automated Component Testing”, Journal of  

Software Testing, Verification and Reliability, Vol. 9, No 1, 1999, pp. 3-26. 

[9]. T.A. Budd, R.J. Lipton, F.G. Sayward, and R.A. Demillo, "The design of a prototype mutation system for program 

testing", In Proceedings of the National Computer Conference, Anaheim, CA, 1978, pp. 623-627. 

[10].   J.M. Haddox, G.M. Kapfhammer, and C. C.Michael, "An approach for understanding and testing third party    

         Software components", In Proceedings of the Annual Reliability and Maintainability Symposium, Seattle, WA,   

         USA, 2002, pp. 293-299. 

[11].   A. Haley and S. Zweben, “Development and Application of a White Box Approach to Integration Testing,”  

          The  Journal of Systems and Software, vol. 4, pp. 309-315, 1984. 

[12].  U. Linnenkugel and M. MuÈ llerburg, “Test Data Selection Criteria for (Software) IntegrationTesting,” Proc.  

          First Int'l Conf. Systems Integration, Apr. 1990, pp. 709-717. 

[13].   Z. Jin and A.J. Offut, “Integration Testing Based on Software Couplings”, Proc. 10th Ann. Conf. Computer  

          Assurance (COMPASS '95) , Jan. 1995, pp. 13-23. 

 

http://www.tuisr.utulsa.edu/iwicss/Black-box_Testing_for_Evolving_COTS-Based_Software.pdf

