
© 2013, IJARCSSE All Rights Reserved Page | 186

 Volume 3, Issue 1, January 2013 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Tiny-Operating System-Software Structural Design and

Implementation for Wireless Sensor Network
 Jitendra joshi

#1
 Rama Bhardwaj

#2
 Priyanka Sharma

#3
 Chetana Singh

#4
 Manjari Kumari

#5

 Ph.D. Scholar M.Tech. Scholar M.Tech. Scholar M.Tech. Scholar B. Tech. Scholar

Department of Computer Science and Engineering,

Jayoti Vidyapeeth Women’s University,

Vedaant Gyan Valley, Village Jharna, Mahala - Jobner, Link Road,

Jaipur Ajmer Express Way, NH-8, Jaipur, Rajasthan

(India)-303007

Abstract— This paper present, tiny operating system for wireless sensor network is a technology which has capability

to change many of the information communication aspects in the upcoming era. Tiny-OS meets these challenges well

and has become the platform of choice for sensor network research area. A critical step towards achieving the vision

behind wireless sensor networks is the design of software architecture such as Tiny micro threading operating system,

Tiny-os execution model and Tiny-os component model are the important tiny- os features that are elected to organize

the accessible WSN.

Keywords— Tiny-OS, Wireless sensor network, Software Architecture, Micro threading.

I. INTRODUCTION

A significant step towards achieving the vision at the back wireless sensor networks is the design of a software structural

design that bridges the gap between raw hardware capabilities and a complete system. The demands placed on the

software of wireless sensor networks are numerous. It must be efficient in terms of memory, processor, and power so that

it meets strict application requirements. It must also be agile enough to allow multiple applications to simultaneously use

system resources such as communication, computation and memory. The extreme constraints of these devices make it

impractical to use legacy systems. Tiny-OS is an operating design explicitly for network sensors.

Tiny-OS draws strongly from previous architectural work on lightweight thread support and efficient network interfaces.

Included in the Tiny-OS system architecture is an active messages communication system. We believe that there is a

fundamental fit between the event based nature of network sensor applications and the event based primitives of the

active messages communication model. In working with wireless sensor networks, two issues emerge strongly: these

devices are concurrency intensive - several different flows of data must be kept moving simultaneously, and the system

must provide efficient modularity hardware specific and application specific components must snap together with little

processing and storage overhead. We address these two problems in the context of current network sensor technology

and the tiny micro threaded OS. Analysis of this solution provides valuable initial directions for architectural innovation.

II. TINY MICRO THREADING OPERATING SYSTEM

Small physical size, modest active power load, and micro standby power load must be provided by the hardware design.

However, an operating system framework is needed that will retain these characteristics by managing the hardware

capabilities effectively, as well as supporting concurrency-intensive operation in a manner that achieves efficient

modularity and robustness. Existing embedded device operating systems do not meet the size, power and efficiency

requirements of this regime. These requirements are strikingly similar to that of building efficient network interfaces,

which must also maintain a large number of concurrent flows and juggle numerous outstanding events [1]. In network

interface cards, these issues have been tackled through physical parallelism [2] and virtual machines [3]. We tackle it by

building an extremely efficient multithreading engine. As in TAM [3] and CILK [4], Tiny-OS maintains a two-level

scheduling structure, so a small amount of processing associated with hardware events can be performed immediately

while long running tasks are interrupted. The execution model is similar to finite state machine models, but considerably

more programmable.

Tiny-OS is designed to scale with the current technology trends supporting both smaller, tightly integrated designs, as

well as the crossover of software components into hardware. This is in contrast to traditional notions of scalability that

are centred on scaling up total power/resources/work for a given computing paradigm. It is essential that software

architecture plans for the eventual integration of sensors, processing and communication.

In order to enable the vision of single-chip, a lower cost sensor node, Tiny-OS combines a highly efficient execution

model, component model and communication mechanisms.

http://www.ijarcsse.com/

Jitendra et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(1),

January - 2013, pp. 186-188

© 2013, IJARCSSE All Rights Reserved Page | 187

III. TINY-OS IMPLEMENTATION MODEL

For availability of the extreme levels of operating efficiency that is required in wireless sensor networks, Tiny-OS uses

event based execution. The event model allows for high levels of concurrency to be handled in a very small amount of

space. In contrast, a thread based approach requires that stack space be pre-allocated for each execution context.

Additionally, the context switch overhead of threaded systems is significantly higher than those of an event-base system.

Context switch rates as high as 40,000 switches per second are required for the base-band processing of a 19.2 Kbps

communication rate.

This is twice every 50 us, once to service the radio and once to perform all other work. The efficiency of an event-based

regime lends itself to these requirements.

A. Event Based Programming

In an event based system, a single execution context is shared between unrelated processing tasks. In Tiny-OS, each

system module is designed to operate by continually responding to incoming events. When an event arrives, it brings the

required execution context with it. When the event processing is completed, it is returned back to the system. Researchers

in the area of high performance computing have also seen that event based programming must be used to achieve high

performance in concurrency intensive applications [5, 6]. In addition to efficient CPU allocation, event-based design

results in low power operation. A key for limiting power consumption is to identify when there is no useful work to be

performed and to enter an ultra-low power state. Event-based systems force applications to implicitly declare when they

are finished using the CPU. In Tiny-OS all tasks associated with an event are conduct rapidly after every event is

signalled. When an event and all tasks are fully processed, unused CPU cycles are spent in the sleep state as opposed to

actively looking for the next interesting event [9]. Eliminating blocking and polling prevents unnecessary CPU activity.

B. Tasks

A limiting factor of an event based program is that long-running calculations can disrupt the execution of other time

critical subsystems. If an event is not complete, all other system functions would halt. To allow for long running

computation, Tiny-OS provides an execution mechanism called tasks. A task is an execution context that runs to

completion in the background without interfering with any other system events.

Tasks can be scheduled at any time but it will not execute until current pending events are completed. Additionally, tasks

can be interrupted by low-level system events. Tasks allow long running computation to occur in the background while

system event processing continues.

Currently task scheduling is performed using a simple FIFO scheduling queue. While it is possible to efficiently

implement priority scheduling for tasks, it is unusual to have multiple outstanding tasks. A FIFO queue has proven

adequate for all application scenarios we have attempted to date.

C. Atomicity

In addition to providing a mechanism for long-running computation, the task Tiny-OS primitive also provides an elegant

mechanism for creating mutually exclusive sections of code. In interrupt-based programming, data race conditions create

bugs that are difficult to detect. In Tiny-OS, code that is executed inside of a task is guaranteed to run to completion

without being interrupted by other tasks [12]. This guarantee means that all tasks are atomic with respect to other tasks

and eliminate the possibility of data race conditions between tasks.

Low-level system components must deal with the complexities associated with re-entrant, interrupt based code in order

to meet their strict real-time requirements. Normally, only simple operations are performed at the interrupt level to

integrate data with ongoing computation. Applications can use tasks to guarantee that all data modification occurs

atomically when viewed from the context of other tasks.

IV. TINY-OS COMPONENT MODEL

In addition to use the highly efficient event-based execution, Tiny-OS also includes a specially designed component

model targeting highly efficient modularity and easy composition. An efficient component model is essential for

embedded systems to increase reliability without sacrificing performance. The component model allows an application

developer to be able to easily combine independent components into an application specific configuration.

In Tiny-OS, each module is defined by the set of commands and events that makes up its interface. In turn, a complete

system specification is a listing of the components to include plus a specification for the interconnection between

components. The Tiny-OS component has four interrelated parts: a set of command handlers, a set of event handlers, an

encapsulated private data frame, and a bundle of simple tasks. Tasks, commands, and event handlers execute in the

context of the frame and operate on its state. To facilitate modularity, each component also declares the commands it

uses and the events it signals.

These declarations are used to facilitate the composition process. As shown in Figure-1, composition creates a graph of

components where high level components issue commands to lower level components and lower level components signal

events to the higher level components.

Jitendra et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(1),

January - 2013, pp. 186-188

© 2013, IJARCSSE All Rights Reserved Page | 188

Figure 1: Component graph for a multi-hop sensing application.

V. CONCLUSION

The objectives of this paper to provide overview of tiny operating systems for Wireless sensor network and to present the

significant features of each one of micro threaded operating system. Tiny-OS system architecture is an active messages

communication system. Tiny-OS maintains a two-level scheduling structure, so a small amount of processing associated

with hardware events can be performed immediately while long running tasks are interrupted. Context switch rates as

high as 40,000 switches per second are required for the base-band processing of a 19.2 Kbps communication rate. Event-

based systems force applications to implicitly declare when they are finished using the CPU. Tasks can be scheduled at

any time but it will not execute until current pending events are completed. All tasks are atomic with respect to other

tasks and eliminate the possibility of data race conditions between tasks.

REFERENCES

1. Culler, D.E., J. Singh, and A. Gupta, Parallel Computer architecture a hardware/software approach. 1999.

2. Esser, R. and R. Knecht, Intel Paragon XP/S - architecture and software environment. 1993: Technical Report KFA-

ZAM-IB-9305.

3. Culler, D.E., et al. Fine-grain parallelism with minimal hardware support: a compiler-controlled threaded abstract

machine. 1991.

4. Blumofe, R., et al., Cilk: An Efficient Multithreaded Runtime System. Proceedings of the 5th Symposium on

Principles and Practice of Parallel Programming, 1995.

5. Hu, J., I. Pyarali, and D. Schmidt, Measuring the Impact of Event Dispatching and Concurrency Models on Web

Server Performance Over High-speed Networks. Proceedings of the 2nd Global Internet Conference, IEEE, 1997.

6. Von Eicken, T., et al. Active messages: a mechanism for integrated communication and computation. In 19th Annual

International Symposium on Computer Architecture. 1992.

7. K. Geihs, Middleware Challenges Ahead‖, IEEE Computer, Juni/2001, S. 24-31.

8. P. Levis, D. Culler, Mate: a tiny virtual machine for sensor networks―, Proc. of ACM Conference on Architecture

Support for Programming Languages and Operating Systems (ASPLOS), October 2002.

9. David P. et al. WISENET—TinyOS Based Wireless Network of Sensors. Industrial Electronics Society, 2003.

IECON '03. The 29th Annual Conference of the IEEE.

10. Al-karaki, J.N. Kamal, A.E. Routing techniques in wireless sensor networks: A survey. IEEE Wire.

Communication. 2004, 11, 6-28.

11. Lindsey, S. Raghavendra, C.S. PEGASIS: Power-efficient Gathering in sensor information systems. In Proceeding

of the IEEE Aerospace Conference, Big Sky, MT, USA, 18–25 March 2002; Volume 3, pp. 1125-1130.

12. Mainwaring, A. Polastre, J. Szewczyk, R. Culler, D. John, A. Wireless sensor networks for habitat monitoring. In

Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta, GA,

USA, 28 September 2002, pp. 88-97.

13. Rodoplu, V. Meng, T.H. Minimum energy mobile wireless networks. IEEE J. Sel. Area. Commun. 1999, 17, 1333-

1344.

14. Li, L. Halpern, J.Y. Minimum-energy mobile wireless networks revisited. IEEE Int. Conf. Commun. 2001, 1, 278-

283.

15. X. Shen, Z. Wang, and Y. Sun. Wireless sensor networks for industrial applications. In Fifth World Congress on

Intelligent Control and Automation (WCICA), volume 4, pages 3636-3640, June 2004

