
© 2013, IJARCSSE All Rights Reserved Page | 595

 Volume 3, Issue 12, December 2013 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Comparison of DSDV and AODV Routing Algorithms in MANETs
 Alisha Gupta Abhay Sharma Amita Verma

Department of ECE, Green Hills Department of ECE, Green Hills Department of ECE, Green Hills

Engineering College, Kumarhatti, Engineering College, Kumarhatti, Engineering College, Kumarhatti,

Himachal Pradesh, India Himachal Pradesh, India Himachal Pradesh, India

Abstract- Mobile Ad-hoc Network (MANET) is an self-configuring, infrastructure less and decentralized network

which needs a robust dynamic routine protocol. Many routing protocols for such networks have been proposed so far.

Amongst popular ones we have studied the following: Dynamic Source Routing (DSR), Ad-hoe On-demand Distance

Vector (AODV), and Destination-Sequenced Distance Vector (DSDV) routing protocol. Nodes of these networks

functions as routers which discovers and maintains the routes to other nodes in the network. Such a network may

operate in a standalone fashion, or may be connected to the larger Internet. This paper examines two routing

protocols for mobile ad hoc networks– the Destination Sequenced Distance Vector (DSDV), the table- driven protocol

and the Ad hoc On-Demand Distance Vector routing (AODV), an On –Demand protocol and evaluates both protocols

based on packet delivery fraction and average delay while varying number of sources and pause time.

Keywords: DSDV and AODV Protocol

INTRODUCTION

In contrast to infrastructure based wireless networks, in ad-hoc networks all nodes are mobile and can be connected

dynamically in an arbitrary manner. A MANET is a collection of wireless mobile nodes forming a temporary network

without using any existing infrastructure or any administrative support. The wireless ad-hoc networks are self-creating,

self-organizing and self-administrating. The nodes in an ad-hoc network can be a laptop, cell phone, PDA (personal

digital assistant) or any other device capable of communicating with those nodes located within its transmission range.

The nodes can function as routers, which discover and maintain routes to other nodes. The ad-hoc network may be used

in emergency search-and-rescue operations, battlefield operations and data acquisition in inhospitable terrain. In ad-hoc

networks, dynamic routing protocol must be needed to keep the record of high degree of node mobility, which often

changes the network topology dynamically and unpredictably.

DESTINATION SEQUENCED DISTANCE VECTOR(DSDV)
It is a routing scheme developed for ad-hoc networks.

It was developed by C. Perkins and P. Bhagwat in 1994. The main contribution of the protocol was to solve the routing

loop problem.

PROTOCOL OVERVIEW

Packets are transmitted between the nodes of the network using route tables at each node. Each route table, at each of the

nodes, lists all available destinations and the number of hops to each. Each route entry is tagged with a sequence number

that is originated by the destination node. To maintain the consistency of route tables in a dynamically varying topology,

each node periodically transmits updates, doing so immediately when new information is available. No assumption is

made about the mobile nodes making any sort of time synchronization and phase relationship of the update periods

between the mobile hosts. These packets indicate which nodes are accessible from each node and the number of hops

necessary to reach them, following the traditional distance-vector routing algorithms.

Routing information is advertised by broadcasting or multicasting the packets that are transmitted periodically and

incrementally as topological changes are detected. Data is also kept about the length of time between the arrival of the

first and the arrival of the best route for each particular destination. On the basis of this data, decisionmay be made to

delay advertising routes that are about to change, thus damping fluctuations of the route tables.

ROUTE ADVERTISEMENTS

The DSDV protocol requires each mobile node to advertise, to each of its current neighbors, its own route table. The

entries in the list may change fairly dynamically over time, so the advertisement must be made often enough to ensure

that every mobile computer can almost always locate every other mobile computer in the collection. In addition, each

mobile computer agrees to relay data packets to other computers upon request. This helps to determine the shortest

number of hops. The data broadcast by each mobile computer will contain its new sequence number and the following

information for each new route.

 The destination’s address

 The number of hops required to reach the destination

http://www.ijarcsse.com/

Gupta et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(12),

December - 2013, pp. 595-603

© 2013, IJARCSSE All Rights Reserved Page | 596

 The sequence number of the information received regarding that destination, as originally stamped by the

destination

Within the headers of the packet, the transmitted route tables will also contain the hardware address and (if appropriate)

the network address of the mobile computer transmitting them. The route tables will also include a sequence number

created by the transmitter. Routes with more recent sequence number are always preferred as the basis for forwarding

decisions, but they are not necessarily advertised. Of the paths with the same sequence number, those with the smallest

metric will be used.

Routes received in the broadcasts are also advertised by the receiver when it subsequently broadcasts its routing

information; the receiver adds an increment to the metric before advertising the route, as incoming packets will require

one more hop to reach the destination.

RESPONDING TO TOPOLOGY CHANGES

Mobile nodes cause broken links as they move from place to place. The broken link may be inferred if no broadcasts

have been received for a while from a former neighbor. A broken link is described by a metric of infinity. When a link to

a next hop has broken, any route through that next hop is immediately assigned an infinite metric and an updated

sequence number. Such modified routes are immediately disclosed in a broadcast routing information packet. Sequence

numbers generated to indicate infinite hops to a destination will be one greater than the last sequence numbers received

from the destination when a node receives an infinite metric and it has an equal or same sequence number with a finite

metric, it triggers a route update broadcast to disseminate the important news about that destination.

ROUTE SELECTION CRITERIA
When a mobile node receives new routing information, that information is compared to the information already available

from previous routing information packets. Any route with a more recent sequence number is used; routes with older

sequence numbers are discarded. A route with a sequence number equal to an existing route is chosen if it has a better

metric and the existing route is discarded or stored as less preferable. The metrics for routes chosen from the newly

received broadcast information are each incremented by one hop. When a mobile node can determine that a route with a

better metric is likely to show up then the advertisement of the new routes should be delayed. The route with later

sequence number must be available for use, but it does not have to be advertised immediately unless it is a route to a

previously unreachable destination. Thus, there will be two route tables at each node- one for use with forwarding

packets and another to be advertised via incremental routing information packets.

To determine the probability of imminent arrival of routing information showing a better metric, the mobile node has to

keep a history of the weighted average time that routes fluctuate until the route with the best metric is received.

Received routes with infinite metrics are not included in this computation of the settling time for route updates.

Fig: 1.1 Example of Ad-hoc network

Consider MH4 in. Table 1.1 shows a possible structure of the forwarding table maintained at MH4.

Table: 1.1 Forwarding Table Maintained at MH4

Gupta et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(12),

December - 2013, pp. 595-603

© 2013, IJARCSSE All Rights Reserved Page | 597

The address of each mobile node is represented by MHi and all sequence numbers are denoted by SNNN_MHi where

MHi specified the computer that created the sequence number and SNNN i9s sequence number value.

Now suppose MH1 moves into the general vicinity of MH8 and MH7 and away from the others (especially MH2). The

new internal forwarding table at MH4 might then appear as shown in table. Only the entry for MH1 shows a new metric.

When MH1 moves into the vicinity of MH8 and MH7, it triggers an immediate incremental routing information update,

which is then broadcast to MH6. MH6, having determined that significant new routing information has been received,

also triggers an immediate update, which carries along the new routing information for MH1. MH4, upon receiving this

information, then broadcasts it at every interval until the next new routing information dump.

Table:1.2 New Routing Information Table

In the incremental advertised routing table, the information for MH4 comes first since it is doing the advertisement. The

information for MH1 comes next because it is the only one that has any significant route changes affecting it. As a

general rule, routes with changed metrics are first included in each incremental packet. The remaining space is sued to

include those routes whose sequence numbers have changed.

AD-HOCON-DEMAND DISTANCE-VECTOR (AODV)

Provides quick and efficient route establishment between nodes desiring communication and was designed specifically

for ad hoc wireless networks. Its goal is to reduce the need for system-wide broadcasts to the furthest extent possible as

compared to DSDV which issues broadcasts to announce every change in the overall connectivity of the ad hoc network.

PROTOCOL OVERVIEW

The protocol does not attempt to maintain routes form every node to every other node in the network. Routes are

discovered on an as-needed basis and are maintained only as long as they are necessary. It is loop-free at all times, ever

while repairing broken links. This loop freedom is accomplished through the use of sequence numbers, which is

increases each time it learns of a accomplished through the use of sequence numbers, which it increases each time it

learns of a change in the topology of its neighborhood. This sequence number ensures that the most recent route is

selected whenever route discovery is executed. In addition, each multicast group has its own sequence number, which is

maintained by the multicast group leader.

AODV is able to provide unicast, multicast and broadcast communication ability. A protocol that offers both unicast and

multicast communication can be streamlined so that route information obtained while searching for a multicast route can

also increase unicast routing knowledge and vice versa. AODV utilizes both a route table (for unicast routes) and a

multicast route table. The route table is used to store the destination and next-hop IP addresses as well as the destination

sequence number.

Additionally, for each destination the node maintains a list of precursor nodes, which route through it in order to reach

the destination. This list is maintained for the purpose of route maintenance if the link breaks. Also associated with each

route table entry is a lifetime. Which is updated whenever a route is used. It also provides for the quick deletion of

invalid routes through the use of a special route error message. It also responds to topological changes that affect active

routes in a quick and timely manner. It builds routs with only a small amount of overhead from routing control messages

and no additional network overhead. It requires nodes to maintain only next-hop information thereby decreasing the

storage requirement at each of the mobile nodes.

UNICAST ROUTE ESTABLISHMENT

Route discovery is purely on demand and follows a route request / route reply discovery cycle. Requests are sent using a

route discovery (RREQ) message. Information enabling the creation of route is sent back in a route reply (RREP)

message.

The basic outline of the route discovery process is as follows:

 When a node needs a route to a destination, it broadcasts a RREQ.

 Any node with a current route to that destination (including the destination itself) can unicast a RREP back to

the source node.

Gupta et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(12),

December - 2013, pp. 595-603

© 2013, IJARCSSE All Rights Reserved Page | 598

 Route information is maintained by each node in its route table.

 Information obtained through RREQ and RREP messages is kept with other routing information in the route

table.

 Sequence numbers are used to eliminate stale routes.

 Routes with old sequence numbers are aged out of the system.

ROUTE DISCOVERY

When a node wishes to send a packet to some destination node, it check its route table to determine whether it has a

current route to that node. If so, it forwards the packet to the appropriate next hop toward the destination. However, if the

node does not have a valid route to the destination, it must initiate a route discovery process. To begin such a process, the

node creates a RREQ also contains a broadcast ID, which is incremented each time the source node initiates a RREQ.

After creating the RREQ , the source node broadcasts the packet and then sets a timer to wait for a reply.

When a node receives a RREQ, it first checks whether it has seen it before by nothing the source IP address and

broadcast ID pair. Each node maintains a record of the source IP address/ broadcast ID for each RREQ it receives, for a

specified length of time. If it has already seen a RREQ with the same IP address / broadcast ID pair, it silently discards

the packet. Otherwise, it records this information and then processes the packet.

To process the RREQ, the node sets up a reverse route entry for the source node in its route table. This reverse route

entry contains the source node’s IP address and sequence number as well as the number of hops to the source node and

the IP address of the neighbor from which the RREQ was received.

In this way, the node knows how to forward the RREQ to the source if one is received later. Associated with the reverse

route entry is a lifetime. If this route entry is not used within the specified lifetime, the route information is deleted to

prevent the stale routing information from lingering in the route table.

To respond to the RREQ, the node must have an unexpired entry for the destination in its route table. Furthermore, the

sequence number associated with the destination must be at least as great as that indicated in the RREQ. This prevents

the formation of routing loops by ensuring that the route returned is never old enough to point to a previous intermediate

node. If the RREQ is lost, the source node is allowed to retry the broadcast route discovery mechanism. After rreq_retries

additional attempts, it is required to notify the application that the destination is unreachable.

FORWARD PATH SETUP

When a node determines that it has a route current enough to respond to the RREQ, it creates RREP.

Fig: 1.2 RREQ Broadcast Flood

The RREP sent in response to the RREQ contains the IP address of both the source and destination. If the destination

node is responding, it places its current sequence number in the packet, initializes the hop count to zero and places the

length of time this route is valid in the RREP’s lifetime field. However, if an intermediate node is responding, it places its

records of the destination’s sequence number in the packet, sets the hop count equal to its distance from the destination

and calculates the amount of time for which its route table entry for the destination will still be valid. It then unicasts the

RREP toward the source node, using the node from which it received the RREQ as the next hop.

When an intermediate node receives the RREP, it sets up a forward path entry to the destination in its route table. To

obtain its distance to the destination, the node increments the value in the hop count field by 1. Also associated with this

entry is a lifetime which is updated each time the route is used. If the route is not used within the specified lifetime, it is

deleted. It is likely that a node will receive a RREP for a given destination from more than one neighbor.In this case,it

forwards the first RREP it receives and forwards a later RREP only if that RREP contains a greater destination sequence

number or a smaller hop count. Otherwise, the node discards the packet. This decreases the number of RREP’s

propagating toward the source while ensuring the most up-to-date and quickest routing information.

Fig: 1.3 RREP Propagation

Gupta et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(12),

December - 2013, pp. 595-603

© 2013, IJARCSSE All Rights Reserved Page | 599

ROUTE MAINTENANCE

Once a route has been discovered for a given source/destination pair, it is maintained as long as needed by the source

node. Movement of nodes within the ad hoc network affects only the routes containing those nodes; such a path is called

an active path. When either the destination or some intermediate node moves, a route error (RERR) message is sent to the

affected source nodes. This RERR is initiated by the node upstream of the break. It lists each of the destinations that are

now unreachable because of loss of the link. If the node upstream of the break has one or more nodes listed as precursor

node for the destination, it broadcasts the RERR to these neighbors. When the neighbors receive the RERR, they mark

their route to the destination as invalid by setting the distance to the destination as infinity and in turnpropagate the

RERR to the precursor nodes, if any such nodes are listed for the destinations in their route tables. When a source node

receivesthe RERR, it can reinitiate the route discovery if the routes is still needed.

Fig: 1.4 RERR Propagation

The link form node 3 to D breaks as node 3 moves to new position 3’. Node 2 sends RERR message to node 1 which

further sends to node S. Node S initiates a route discovery if it still needs a route to D.

NETWORK SIMULATOR

NS (version 3) is an object-oriented, discrete event network simulator developed at UC Berkely. NS is primarily useful

for simulating local and wide area networks.

Written in: C++ (core), Python (bindings)

Platform: Unix, Mac OS X

It implements network protocols such as TCP and UDP, traffic source behavior such as FTP, Telnet, Web, CBR and

VBR, router queue management mechanism such as Drop Tail RED and CBQ , routing algorithms such as Dijkstra, and

more NS also implements multicasting and some of the MAC layer protocols for LAN simulations.

Fig: 1.5 Simplified User view of NS

As shown in Figure, in a simplified user’s view, NS is object- oriented Tel (OTcl) script interpreter that has a simulation

event scheduler and network components object libraries, and network setup(plumbing) module libraries (actually,

plumbing modules are implemented as member functions of the base simulator object). In other words, to use NS, you

program in OTcl script language. To setup and run a simulation network, a user should write an OTcl script that initiates

an event scheduler, sets up the network topology using the network object and the plumbing functions in the library, and

tells sources when to start and stop transmitting packets through the event scheduler. The term “plumbing” is used for a

network setup, because setting up a network is plumbing possible data paths among network objects by setting the

“neighbor” pointer of an object to the address of an appropriate object. When a user wants to make a new network object,

he or she can easily make an object either by writing a new object or by making a compound object from the object

library, and plumb the data path through the object. This may sound like complicated job, but the plumbing OTcl

modules actually make the job very easy. The power of NS comes from this plumbing.

Another major components of NS beside network objects is the event scheduler. An event in NS is a packet ID that is

unique for a packet with scheduled time and the pointer to an object that handles the event. In NS, as event scheduler

keeps track of simulation time and fires all the events in the event queue scheduled for the current time by invoking

appropriate network components, which usually are the ones who issued the events, and let them do the appropriate

action associated with packet pointer by the event. Network components communicate with one another passing packet,

however this does not consume actual simulation time handling a packet (i.e. need a delay) use the event scheduler by

issuing an event for the packet and waiting forthe event to be fired to itself before doing further action handling the

Gupta et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(12),

December - 2013, pp. 595-603

© 2013, IJARCSSE All Rights Reserved Page | 600

packet and waiting for the event to be fired to itself before doing further action handling the packet. For example, a

network switch components that simulates a switch with 20 microseconds of switching delay issues an event for packet

to be switched to the scheduler as an event 20 microsecond later. The scheduler after 20 microsecond dequeues the event

and fires it to the switch component, which then passes the packet to an appropriate output link component. Another use

of an event scheduler is timer. For example, TCP needs a timer to keep track of a packet transmission time out for

retransmission (Transmission of a packet with the same TCP packet number but different NS packet ID). Timers use

event schedulers in a similar manner that delay does. The only difference is that timer measures a time value associated

with a packet and does an appropriate action related to that packet after a certain time goes by, and does not simulate a

delay.

NS is written not only in OTcl but in C++ also. For efficiency reason, NS separates the data path implementation from

control path implementations. In order to reduce packet and event processing time (not simulation time), the event

scheduler and the basic network components objects in the data path are written and complied using C++. One thing to

note in the figure is that for C++ objects that have an OTcl linkage forming a hierarchy, there is a matching OTcl object

hierarchy very similar to that of C++.

Fig: 1.6 Architecture view of NS

Gupta et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(12),

December - 2013, pp. 595-603

© 2013, IJARCSSE All Rights Reserved Page | 601

This shows the general architecture of NS. In this figure a general user (not an NS developer) can be thought of standing

at the left bottom corner, designing and running simulations in Tcl using the simulator objects in the OTcl library.

 The event schedulers and most of the network components are implemented in C++ and available to OTcl through an

OTcl linkage that is implemented using tclcl. The whole thing together makes NS, which is a OO extended Tcl

interpreter with network simulator libraries.

SIMULATION GRAPHS

Calculation of Packet Delivery Ratio, Average End to end Delay, Overhead

Area: 50*50 m
2

No. of Nodes : 20, 50

Simulation Time: 50 Seconds ï 150 Seconds

Protocols: AODV, DSDV

Without mobility of nodes, with mobility: 1 m/s, 5 m/s, 10 m/s

WITHOUT MOBILITY

Packet Delivery Ratio: Total number of delivered data packets divided by total number of data packets transmitted by

all nodes. This performance metric will give us an idea of how well the protocol is performing in terms of packet delivery

at different no. of nodes in the network using different traffic speeds.

WITH MOBILITY

Gupta et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(12),

December - 2013, pp. 595-603

© 2013, IJARCSSE All Rights Reserved Page | 602

REFERENCES

[1] Alex Ali Hamidian “A study of Internet Connectivity for Mobile Ad-hoc Network” Department of

Communication systems Lund Institute of Technology, Lund University Sweden, January 2003.

[2] Charles E. Perkins and Elizabeth M.royer. “Ad hoc on-demand distance vector routing.” In Proceedings of the 2
nd

IEEE Workshop on Mobile Computing Systems and Applications, pages 80-100. IEEE, February 1999.

[3] David B.Johnson. “Routing in Ad Hoc networks of Mobile Hosts”. In Proceedings of the IEEE Workshop on

Mobile Computing Systems and Application, pages 158-163. IEEE Computer Society, December 1994/

[4] Vijayalakshmi M. et. al. QOS PARAMETER ANALYSIS ON AODV AND DSDV PROTOCOLSIN A

WIRELESS NETWORK / Indian Journal of Computer Science and Engineering Vol. 1 No. 4 283-294

[5] David A. Maltz, Josh Broch, and David B. Johnson.” Experiences Designing and Building a Multi-Hop Wireless

Ad Hoc Network Testbed”. Technical Report CMU-CS-99-116, School of Computer Science, Carnegie Mellon

University.

[6] David A. Maltz, Josh Broch, JoretaJectcheva, and David B. Johnson. “The Effects of On-Demand Behavior in

Routing Protocols for Multi-Hop Wireless Ad Hoc Networks”. IEEE Journal on Selected Areas of

Communciation, 17(8):1439-1453, August 1999. Pittsburgh, Pennsylvania, March 1999.

Gupta et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(12),

December - 2013, pp. 595-603

© 2013, IJARCSSE All Rights Reserved Page | 603

[7] M.S. Corson and A. Ephremides. “A Distributed Routing Algorithm for Mobile Wireless Network.” ACM

Wireless Network Journal 1(1):61-82, February 1995.

[8] Gafni and Bertsekas. “Distributed Algorithm for Generating Loop-free Routes in Networks with Frequently

Changing Topology”. IEEE Transactions on Communication 29(1):11-15, January 1981.

[9] Schiller J. Mobile Communication, 2000.

[10] V. Park and M.S. Corson. “A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Network.” In

Proceedings of IEEE Infocom ô97, April 1997.

