
Reddy et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 648-655

© 2013, IJARCSSE All Rights Reserved Page | 648

 Volume 3, Issue 10, October 2013 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Effective Load Balancing Using Data Driven Threads in GCC
 Praveen Kumar Reddy.M Adithya Chandra Varma.D Prof. Varun Kumar. M
 School of Computing Science School of Computing Science School of Information Technology

 India India India

Abstract— Stream programming restricts parallel processing that can be performed by applying a series of kernel

functions to elements in a stream by compilers. It achieves this by decomposing the program into tasks and identifying

the flow of data between them. Existing system provides an extension to OpenMP 3.0 in GCC compiler for enabling

stream processing. But the system fails to support proper load balancing. Proposed system tries to overcome this

limitation by making use of data driven scheduling by means of data flow threads implemented in the compiler. The

data flow thread model extension is prototyped for GCC 4.2.

Keywords— GCC, OpenMP, stream programming, data-flow thread.

I. INTRODUCTION

Single-threaded application’s performance is expected to change with present generations of CPU’s [1, 3]. In order to

improve performance one must change the code structure which is a complex task for memory hierarchies and parallel

hardware [2, 5, and 6]. Also, it becomes a difficult task for programmers to increase the performance as it involves target

optimization. So to address this problem high level languages are proposed to express communication patterns which are

independent of hardware. In recent times stream programming was introduced which guaranties functional determinism

in parallel programming. Stream programming allows applications to achieve parallel processing easily. Stream

programming is used in applications where application needs more computational entities such as Floating Point

Unit(FPU) on a Graphics Processing Unit(GPU) without managing synchronization explicitly[12,13,18].

 Stream programming model simplifies the hardware and software by limiting the parallel computations. This can be

achieved by applying a series of kernel functions to each element in a stream (data). Stream programming also allows

pipeline, data and task parallelism by producer and consumer relationship [11, 12, and 17]. This relationship allows the

applications to take scheduling decision easily. The main advantage of the stream programming relies on its kernel

functions by which it achieves a better allocation of resources, better scheduling of global Input and output (I/O)

communications. This feature of stream programming has been added to OpenMP 3.0 [4, 8, 9] for which a compiler

should automatically support the stream programming qualities. OpenMP allows explicit data flow by using sharing

clauses (shared and private data).To achieve this Manual synchronization (using shared memory) is necessary to use the

task constructs, which is a complex task for developers [19, 17, 21].

This paper provides a proper load balancing support and a run time dataflow by making use of data driven scheduling

by means of data flow threads .We implemented this paper and evaluated the results in GCC 4.2. This paper is planned as

follows. Section 2 gives a detailed literature survey and the motivation to do this work. Section 3 and 4 presents our

approach towards the proposed system and its advantages .Section 5 implements our proposed work in GCC 4.2 followed

with results in section 6.Section 6 ends this paper with conclusion and future work.

II. EXISTING SYSTEM &RELATED WORK

Execution of parallel data leads to a need of high memory bandwidth for multi core architectures, hence leading

to access latencies in main memory [2, 3, and 4]. To address this problem stream programming has been introduced. In

stream programming data and task level parellism is achieved by its high level semantics. Many libraries and languages

are developed for the stream programming [5, 6, and 8]. Some languages are common programming languages that are

independent of architecture while others are specially designed for particular architectures [7]. A stream programming is

done by dividing the program into pipeline stages. These stages can be either sequential or parallel depending upon the

producer and consumer correlation. In [17] author proved by his results that application can be parallelized by using

pipeline parallelism by which he achieved scalability. This pipeline parallelism is introduced in the multicore

environment to increase the efficiency and speedup by dividing the application into parallel tasks. But in [17], including

pipeline parellism in OpenMP does not provide good results forparellization of Bzip2 due to the data dependency

between tasks. Instead they used FIFO queues to parellize the tasks. In this paper data dependency between the tasks is

achieved by means of providing data flow threads.

 Stream It language [12] is a parallel programming language that is specially developed for huge data (streaming)

applications. The main advantage of using this language is providing explicit parellism, independent of the architecture

[13]. Stream it allows explicit parellism by Split Join concept, by dividing the output of the application in to different

streams, then joining the results in to a single output stream [11].

http://www.ijarcsse.com/

Reddy et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 648-655

© 2013, IJARCSSE All Rights Reserved Page | 649

In [4] author proposed Brook language with SPMD (Single Program Multiple Data) operation on the stream.

This language is an extension added to C which ensures parellism using control flow operations. Their system design was

assumed to be light weight execution model that provides a proper load balancing but limited for small applications [11,

13]. The existing system provided an extension to OpenMP to ensure stream programming [25, 26]. This extension has

been done because of the increase in parallel applications and also to address the scalability and efficiency issue in the

modern multi-core architectures [21, 22, 23, and 24]. The existing system also offered the principles needed to extend

this stream programming in OpenMP and its advantages. Proper static scheduling and task free implementations were

proposed to ensure persistency among the tasks. In the need for ensuring persistency among the tasks, the system failed

to address proper load balancing.

III. PROPOSED SYSTEM

 The proposed system uses the properties of SSA (Static single Assignment) to achieve thread level data flow parellism.

Static Single Assignment (SSA) is the property of IR where each variable should be assigned exactly one time.

The proposed system used four built in functions in the GCC compiler as a pass to manage the frames and threads.

Figure 1: Architecture of the Proposed System

Table 1: Functions to manage Frames and Data Flow

IV. DATA FLOW AT THREAD LEVEL

Conversion of sequential programs in to parallel data flow involves splitting the basic blocks at statement level there by

reducing the communication overhead. In order to reduce the communication overhead, SCC (Strongly Connected

Components) should be identified using dependency graph. The proposed algorithm uses SSA form and generates a pass

to the GCC.

Functions Description

void *tacreate(void (*fun)(), int sc, int size); A new data flow thread is created and its associated

frame is assigned to the thread

void tdecrease(void *fp); After the termination of the thread the frame pointer

is decremented by one.

void ternd(); The frame is deallocated for the thread that is

currently allocated

void *taget cfp(); Current Thread’s frame pointer is returned.

OpenMP

3.0

No de-

pendenc

es

Do All

Data

Paralleli

sm

Task

paralleli

sm

Common

Patterns

Explicit

Synchro

nization

Explicit

Data-

Flow

Decoupli

ng

Depend

ent

Tasks

Reddy et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 648-655

© 2013, IJARCSSE All Rights Reserved Page | 650

A.DATA FLOW THREADS GENERATION ALGORITHM

Data Flow Threads Pseudo code

Input: Application program

Output: Program Dependency graph, Data Flow Program Dependency Graph

Data Flow Thread Generation (Application program)

Begin

If (serial program) then

Generate PDG (Program Dependency Graph) using Static Single Assignment.

Apply the functions and merge the Strongly Connected Components (SCC) in the PDG

Define DFPDG (Data Flow Program Dependency Graph), which is derived from (SSAPDG) to assign

the data flow frames and flow of values with respect to control dependencies

Generate the code for target data flow using Data Flow Program Dependency Graph

 End of if

End

End of Data Flow Thread Generation

Fig 1.1 Pseudo code of the Data Flow Thread Generation

B. APPLYING SSA TO THE BASIC BLOCKS

A unique name representation is given to each variable in the figure 1.When multiple inputs come to a single basic block

node is introduced which eliminates redundancy. Some of the Ω nodes may lead to redundancy, for which Loop un-

switching is done. The Ω node defined x, y is used only outside of the loop, whereas the Ω node for variable j is used

inside the while loop leading to redundancy. Hence loop un-switching is done.

T1 x=0; T1 x=0;

T2 j=0; T2 j=0;

T3 y=0; T3 y=0;

T9 while (j<100) T9 if (j<100) {

 { Do {

T6 x=j; T6 x=j;

T7 y=fun (j); T7 y=fun (j);

T8 j=last (j); T8 j=last (j);

 } T9 } while (j<100)

T12 if(x>y) }

T13 set=x; T12 if(x>y)

 Else T13 set=x;

T14 set=y; T14 else set=y;

T16 return set; T16 return set;

Figure 2. Before Unswitching after Unswitching

T1 x0=0;

T2 j0=0; T10 x2=Ω(x0, x1);

T3 y0=0; T11 y2=Ω (y0, y1);

T4 if (j0<=99) T12 if(x2>y2)

 goto T5; goto T13;

 Else else

 Goto T10; goto T14;

T5 j1=Ω (j0, j2); T13 set0=y2;

T6 x1=j1; goto T15;

T7 y1=fun (j1); T14 set1=y2;

T8 j2=last (j1); T15 set2=Ω (set0, set1);

T9 if (j2<=99) T16 return set;

 Goto T5;

 Else

 Goto T10;

Figure 3.SSA after Unswitching

Reddy et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 648-655

© 2013, IJARCSSE All Rights Reserved Page | 651

C. GENERATION OF PROGRAM DEPENDENCY GRAPH FOR SSA

Generating program dependency graph for the figure 3 is mainly for two reasons

a) To remove the redundancy between the variables and maintain each definition unique.

b) The complexity is reduced from O (n
2
) to O (n), since the redundant edges in the PDG can be eliminated.

Figure 3 represents the program dependency graph (PDG) for the SSA code of the figure 2, where each statement is

represented in the square box and its dependencies are represented in the form of edges. Solid lines in the figure denote

the data dependencies between the statements whereas dotted line represents control dependencies.

t2 t4 t1 t3 t10 t11 t12 t15 t16

foo

t5 t8 t6 t7 t13 t14

t9

j0

j

0

j1

j2

j1

j1

j2

x0

x1

y0

y1

x2 y2 fun0

fun1

fun2

Figure 4: Program dependency graph (PDG) for the SSA code of figure 3

D. Merging SSC’s (Strongly Connected Components)

Since the statements t5, t8, and t9 are strongly connected components (they cannot be parellized and their execution is

serial) replace with a new component scc1 which reduces the overhead for parellization and thereby providing a proper

load balancing. Figure 4 represents the PDG for the SSA after merging strongly connected components.

t2 t4 t1 t3 t10 t11 t12 t15 t16

foo

t6 t7 t13 t14scc1

j

0

x0

x1

y0

y1

x2 y2 fun0

fun1

fun2

j0

j1

j1

Figure 5: Generation of PDG for SSA after merging Strongly Connected Components (SCC)’

E. GENERATION OF DATA FLOW PROGRAM DEPENDENCE GRAPH

From figure 5 the nodes t6 and t7 are of same type since their control depends on t4 and hence t6, t7 can be fused to a

single node. Similarly we can observe that t2, t4, t1, t3, t10, t11, t12, t15, t16 can be fused to single node. But this is a

critical thing as there is chain t10, t13; t15 where t13 depends on t10 and t15 depends on t13.Similar case is applicable to

the chain t11, t14, t15. Hence typed fusion is applied to such chains. Figure 6 represents the data flow program

dependence graph after applying typed fusion with a restriction that dependence chains are not merged as a single

component.

Reddy et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 648-655

© 2013, IJARCSSE All Rights Reserved Page | 652

foo

f1 f3 f4

scc1 f2 t13 t14

j0

j1

x1

y1

x2

y2

fun1fun0

Figure 6: Generation of Data Flow Program Dependence Graph for Figure 5

V. EXPERIMENTAL ANALYSES

The experimental analysis describes the implementation of thread level data flow approach and its comparison with serial

data flow. This thread level data flow approach is implemented in GCC. The libgomp pass of GCC was modified to

incorporate the necessary changes to support data flow threads and frames.

Table 2: Comparison of execution time of with and without thread level data flow in dual core processor

Block size Execution Time without data

flow at thread level(in Seconds)

Execution Time using data flow at

threads level(in seconds)

b7 400.324518 382.87848

b8 400.324518 363.685213

b9 400.324518 377.539737

b10 400.324518 391.3115

Figure 7: Comparison of execution time for sequential approach with Thread level Data flow approach for dual

core processor.

Table 3: Comparison of execution time of with and without thread level data flow in quad core processor

Block size Sequential Execution Time(in

Seconds)

execution time using data flow at

threads level (in seconds)

b7 387.728347 352.973301

b8 387.728347 340.485913

Reddy et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 648-655

© 2013, IJARCSSE All Rights Reserved Page | 653

b9 387.728347 356.321737

b10 387.728347 360.312115

Figure 8: Comparison of execution time for sequential approach with Thread level Data flow approach for

quad core processor.
The analysis was conducted with the Cholesky algorithm with a square matrix of 2

12
 x 2

12
size with 20 iterations. The

results were obtained by making use of varying block sizes (from 2
7
 - 2

10
).

Block size Speed up without using data

flow threads(in Seconds)

Speed up using data flow at

threads level(in seconds)

b7 2.523 2.689

b8 2.523 2.931

b9 2.523 2.834

b10 2.523 2.634

Table 4: Comparison of speed up of with and without thread level data flow

Figure 9: Comparison of speed up of with and without thread level data flow

VI. CONCLUSIONS

This paper provides a proper load balancing in stream programming by making use of data driven scheduling which is

implemented in the GCC compiler. The proposed algorithm initially generates a PDG using SSA (Static Single

Assignment) then applying the loop unrolling. The DFPDG is generated using typed fusion. The experimental results

show that the proposed algorithm improves the efficiency and decreases the execution time, thereby providing a proper

load balancing.

Reddy et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 648-655

© 2013, IJARCSSE All Rights Reserved Page | 654

ACKNOWLEDGMENT

The authors would like to thank the School of Computer Science and Engineering, VIT University, for giving them the

opportunity to carry out this project and also for providing them with the requisite resources and infrastructure for

carrying out the research.

REFERENCES

[1] Arvind, R. S. Nikhil, and K. Pingali. I-structures: “Data structures for parallel computing”. ACM Trans. On

Programming Languages and Systems, 11(4):598–632, 1989.

[2] Dr.M.RajasekharaBabu, Tutorial/Lecture Notes on “Advanced Computer Architectures and OpenMP” Fall

Semester 2012”, VIT University, India.http://mrajababu.com.

[3] D r.M.RajasekharaBabu Babu, Tutorial/Lecture Notes on “Advanced Compiler and Design” winter Semester

2012”, VIT University, and India.http://mrajababu.com

[4] Antoniu Pop and Albert Cohen.“OpenStream: Expressiveness and data-flow compilation ofOpenMP streaming

programs”. ACM Transactions on Architecture and Code Optimization (TACO), selected for presentation at the

HiPEAC 013 Conf., January 2013

[5] P. Bellens, J. M. Pérez, R. M. Badia, and J. Labarta.CellSs: “a programming model for the Cell BE architecture”.

In Super Computing,pages 94–110,2006.

[6] R. H. Bisseling. Parallel Scientific Computation: “AStructured Approach using BSP and MPI”. Oxford

University Press, pages 41-48, Mar. 2004.

[7] P. M. Carpenter, D. Ródenas, X. Martorell, A. Ramírez, andE.Ayguadé.A streaming machine description

andprogramming model. In Soft Computing, pages 107–116, 2007.

[8] R. Cytron. Doacross: Beyond vectorizationformultiprocessors. In Intl. In preceding ofConf. on Parallel

Processing(ICPP),pages 33-46, Saint Charles, IL, 1986.

[9] J. B. Dennis and G. R. Gao. Efficient pipelined dataflowprocessor architecture. In Supercomputing (SC’08),

pages 368–373, 2008.

[10] H. M. et al. ACOTES project: Advanced compilertechnologies for embedded streaming. Intl. J. of

ParallelProgramming, 2010.Special issue on European HiPEACnetwork of excellence member’s projects.

[11] V. Marjanovic, J. Labarta, E. Ayguadé, and M. Valero.Effective communication and computation overlap

withhybrid MPI/SMPSs. In Parallel Computing, 2010.

[12] A.Munshi. The OpenCL specification, v. 1.0, revision29.www.khronos.org/registry/cl/specsopencl-1.0.29.pdf,

2008.

[13] V. Pankratius, A. Jannesari, and W. F. Tichy.Parallelizingbzip2: “A case study in multicore software

engineering”. IEEE Software., page no 70–77, 2009.

[14] A. Pop, S. Pop, H. Jagasia, J. Sjödin, and P. H. J. Kelly.`“Improving GNU compiler collection infrastructure

forstreamization”. In Proceedings of the 2008 GCC Developers’Summit, pages 77–86, 2008.

http://www.gccsummit.org/2008.

[15] The StreamIt language. http://www.cag.lcs.mit.edu/streamit/.

[16] E. A. Lee and D. G. Messerschmitt. “Static scheduling of synchronous data flow programs for digital signal

processing”. IEEE Trans. Computers, 36(1):24–25, 1987.

[17] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic Thread Extraction with Decoupled Software

Pipelining.In IEEE/ACM Intl. Symp.on Microarchitecture, volume 0, pages 105–118, Los Alamitos, CA, USA,

2005. IEEE Computer Society.

[18] J. Planas, R. M. Badia, E. Ayguad´e, and J. Labarta.“Hierarchical Task-Based Programming With StarSs”. Intl.

J. on High Performance Computing Architecture, 23(3):284–299, 2009.

19] A. Portero, Z. Yu, and R. Giorgi. T-Star (T*): “An x86-64 ISA extension to support thread execution on many

cores”. In HiPEAC ACACES- 2011, pages 277–280, Fiuggi, Italy, July 2011.

[20] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August. “Parallel-stage decoupled software pipelining”.

In Proc. of the 6
th

 annual IEEE/ACM Intl. Symp.on Code Generation and Optimization, CGO ’08, pages 114–

123, New York, NY, USA, 2008. ACM.

[21] K. Stavrou, M. Nikolaides, D. Pavlou, S. Arandi, P. Evripidou, and P. Trancoso. TFlux: “A Portable Platform

for Data-Driven Multithreading on Commodity Multicore Systems”. In Intl. Conf. on Parallel Processing

(ICPP’08), pages 25–34, Portland, Oregon, Sept. 2008.

[22] P. Tu and D. Padua.“Gated SSA-based demand-driven symbolic analysis for parallelizing compilers”. In Proc.

of the 9th Intl. Conf. on Supercomputing, ICS ’95, pages 414–423, New York, NY, USA, 1995. ACM.

[23] R. Cytron, J. Ferrante, and V. Sarkar. “Experiences using control dependence in PTRAN”. In Selected papers of

the second workshop on Languages and compilers for parallel computing, pages 186–212, London, UK, UK,

1990. Pitman Publishing.

[24] A. L. Davis. The architecture and system method of DDM1: “A recursively structured data driven machine”. In

Proceedings of the 5
th

 annual symposium on Computer architecture, ISCA ’78, pages 210–215, New York, NY,

USA, 1978. ACM.

[25] Roberto Giorgi, "TERAFLUX: Exploiting Dataflow Parallelism in Teradevices", ACM Computing Frontiers,

Cagliari, Italy, May 2012, pp. 303-304.

http://mrajababu.com/
http://www.gccsummit.org/2008
http://www.cag.lcs.mit.edu/streamit/

Reddy et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 648-655

© 2013, IJARCSSE All Rights Reserved Page | 655

[26] Roberto Giorgi, Zdravko Popovic, Nikola Puzovic, "DTA-C: A Decoupled multi-ThreadedArchitecture for CMP

Systems", Proc. IEEE SBAC-PAD, Gramado, Brasil, Oct. 2007, pp. 263-270

