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Abstract— Stream programming restricts parallel processing that can be performed by applying a series of kernel 

functions to elements in a stream by compilers. It achieves this by decomposing the program into tasks and identifying 

the flow of data between them. Existing system provides an extension to OpenMP 3.0 in GCC compiler for enabling 

stream processing. But the system fails to support proper load balancing. Proposed system tries to overcome this 

limitation by making use of data driven scheduling by means of data flow threads implemented in the compiler. The 

data flow thread model extension is prototyped for GCC 4.2. 
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I. INTRODUCTION 

Single-threaded application’s performance is expected to change with present generations of CPU’s [1, 3]. In order to 

improve performance one must change the code structure which is a complex task for memory hierarchies and parallel 

hardware [2, 5, and 6]. Also, it becomes a difficult task for programmers to increase the performance as it involves target 

optimization. So to address this problem high level languages are proposed to express communication patterns which are 

independent of hardware. In recent times stream programming was introduced which guaranties functional determinism 

in parallel programming. Stream programming allows applications to achieve parallel processing easily. Stream 

programming is used in applications where application needs more computational entities such as Floating Point 

Unit(FPU) on a Graphics Processing Unit(GPU) without managing synchronization explicitly[12,13,18].  

 Stream programming model simplifies the hardware and software by limiting the parallel computations. This can be 

achieved by applying a series of kernel functions to each element in a stream (data). Stream programming also allows 

pipeline, data and task parallelism by producer and consumer relationship [11, 12, and 17]. This relationship allows the 

applications to take scheduling decision easily. The main advantage of the stream programming relies on its kernel 

functions by which it achieves a better allocation of resources, better scheduling of global Input and output (I/O) 

communications. This feature of stream programming has been added to OpenMP 3.0 [4, 8, 9] for which a compiler 

should automatically support the stream programming qualities. OpenMP allows explicit data flow by using sharing 

clauses (shared and private data).To achieve this Manual synchronization (using shared memory) is necessary to use the 

task constructs, which is a complex task for developers [19, 17, 21]. 

This paper provides a proper load balancing support and a run time dataflow by making use of data driven scheduling 

by means of data flow threads .We implemented this paper and evaluated the results in GCC 4.2. This paper is planned as 

follows. Section 2 gives a detailed literature survey and the motivation to do this work. Section 3 and 4 presents our 

approach towards the proposed system and its advantages .Section 5 implements our proposed work in GCC 4.2 followed 

with results in section 6.Section 6 ends this paper with conclusion and future work. 

 

II. EXISTING SYSTEM &RELATED WORK 

Execution of parallel data leads to a need of high memory bandwidth for multi core architectures, hence leading 

to access latencies in main memory [2, 3, and 4]. To address this problem stream programming has been introduced. In 

stream programming data and task level parellism is achieved by its high level semantics. Many libraries and languages 

are developed for the stream programming [5, 6, and 8]. Some languages are common programming languages that are 

independent of architecture while others are specially designed for particular architectures [7]. A stream programming is 

done by dividing the program into pipeline stages. These stages can be either sequential or parallel depending upon the 

producer and consumer correlation. In [17] author proved by his results that application can be parallelized by using 

pipeline parallelism by which he achieved scalability. This pipeline parallelism is introduced in the multicore 

environment to increase the efficiency and speedup by dividing the application into parallel tasks. But in [17], including 

pipeline parellism in OpenMP does not provide good results forparellization of Bzip2 due to the data dependency 

between tasks. Instead they used FIFO queues to parellize the tasks. In this paper data dependency between the tasks is 

achieved by means of providing data flow threads.  

 Stream It language [12] is a parallel programming language that is specially developed for huge data (streaming) 

applications. The main advantage of using this language is providing explicit parellism, independent of the architecture 

[13]. Stream it allows explicit parellism by Split Join concept, by dividing the output of the application in to different 

streams, then joining the results in to a single output stream [11].  
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In [4] author proposed Brook language with SPMD (Single Program Multiple Data) operation on the stream. 

This language is an extension added to C which ensures parellism using control flow operations. Their system design was 

assumed to be light weight execution model that provides a proper load balancing but limited for small applications [11, 

13]. The existing system provided an extension to OpenMP to ensure stream programming [25, 26]. This extension has 

been done because of the increase in parallel applications and also to address the scalability and efficiency issue in the 

modern multi-core architectures [21, 22, 23, and 24]. The existing system also offered the principles needed to extend 

this stream programming in OpenMP and its advantages. Proper static scheduling and task free implementations were 

proposed to ensure persistency among the tasks. In the need for ensuring persistency among the tasks, the system failed 

to address proper load balancing. 

III.     PROPOSED SYSTEM 

 The proposed system uses the properties of SSA (Static single Assignment) to achieve thread level data flow parellism. 

Static Single Assignment (SSA) is the property of IR where each variable should be assigned exactly one time. 

The proposed system used four built in functions in the GCC compiler as a pass to manage the frames and threads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Architecture of the Proposed System 

 

Table 1: Functions to manage Frames and Data Flow 

    

IV.      DATA FLOW AT THREAD LEVEL 

Conversion of sequential programs in to parallel data flow involves splitting the basic blocks at statement level there by 

reducing the communication overhead. In order to reduce the communication overhead, SCC (Strongly Connected 

Components) should be identified using dependency graph. The proposed algorithm uses SSA form and generates a pass 

to the GCC. 

Functions Description 

void *tacreate(void (*fun)(), int sc, int size); A new data flow thread is created and its associated 

frame is assigned to the thread  

void tdecrease(void *fp); After the termination of the thread the frame pointer 

is decremented by one. 

 

void ternd(); The frame is deallocated for the thread that is 

currently allocated 

 

void *taget cfp(); Current Thread’s frame pointer is returned. 
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A.DATA FLOW THREADS GENERATION ALGORITHM 

 

Data Flow Threads Pseudo code 

_________________________________________________________________________________________________ 

Input: Application program 

Output: Program Dependency graph, Data Flow Program Dependency Graph 

Data Flow Thread Generation (Application program) 

Begin 

If (serial program) then 

Generate PDG (Program Dependency Graph) using Static Single Assignment. 

Apply the functions and merge the Strongly Connected Components (SCC) in the PDG 

Define DFPDG (Data Flow Program Dependency Graph), which is derived from (SSAPDG) to assign 

the data flow frames and flow of values with respect to control dependencies 

Generate the code for target data flow using Data Flow Program Dependency Graph 

 End of if 

End 

End of Data Flow Thread Generation 

_________________________________________________________________________________________________ 

Fig 1.1 Pseudo code of the Data Flow Thread Generation 

 

 

B. APPLYING SSA TO THE BASIC BLOCKS 

A unique name representation is given to each variable in the figure 1.When multiple inputs come to a single basic block 

node is introduced which eliminates redundancy. Some of the Ω nodes may lead to redundancy, for which Loop un-

switching is done. The Ω node defined x, y is used only outside of the loop, whereas the Ω node for variable j is used 

inside the while loop leading to redundancy. Hence loop un-switching is done. 

 

T1  x=0;     T1  x=0; 

T2  j=0;     T2  j=0; 

T3  y=0;     T3  y=0; 

T9  while (j<100)    T9  if (j<100) {  

  {       Do { 

T6   x=j;    T6  x=j; 

T7   y=fun (j);   T7  y=fun (j); 

T8   j=last (j);   T8  j=last (j); 

  }     T9  } while (j<100) 

T12  if(x>y)       }   

T13  set=x;     T12  if(x>y) 

  Else     T13  set=x; 

T14  set=y;     T14  else set=y; 

T16  return set;    T16  return set; 

 

Figure 2. Before Unswitching after Unswitching 

 

 

 

T1  x0=0;      

T2  j0=0;     T10  x2=Ω(x0, x1); 

T3  y0=0;     T11  y2=Ω (y0, y1); 

T4  if (j0<=99)    T12  if(x2>y2) 

  goto T5;       goto T13; 

  Else       else 

  Goto T10;      goto T14; 

T5  j1=Ω (j0, j2);    T13  set0=y2; 

T6  x1=j1;       goto T15; 

T7  y1=fun (j1);    T14  set1=y2; 

T8  j2=last (j1);    T15  set2=Ω (set0, set1); 

T9  if (j2<=99)    T16  return set; 

  Goto T5; 

  Else 

  Goto T10; 

     

Figure 3.SSA after Unswitching 
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C. GENERATION OF PROGRAM DEPENDENCY GRAPH FOR SSA 

Generating program dependency graph for the figure 3 is mainly for two reasons 

a) To remove the redundancy between the variables and maintain each definition unique. 

b) The complexity is reduced from O (n
2
) to O (n), since the redundant edges in the PDG can be eliminated. 

Figure 3 represents the program dependency graph (PDG) for the SSA code of the figure 2, where each statement is 

represented in the square box and its dependencies are represented in the form of edges. Solid lines in the figure denote 

the data dependencies between the statements whereas dotted line represents control dependencies. 
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Figure 4: Program dependency graph (PDG) for the SSA code of figure 3 

 

D. Merging SSC’s (Strongly Connected Components) 

Since the statements t5, t8, and t9 are strongly connected components (they cannot be parellized and their execution is 

serial) replace with a new component scc1 which reduces the overhead for parellization and thereby providing a proper 

load balancing. Figure 4 represents the PDG for the SSA after merging strongly connected components. 
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Figure 5: Generation of PDG for SSA after merging Strongly Connected Components (SCC)’ 

E. GENERATION OF DATA FLOW PROGRAM DEPENDENCE GRAPH 

From figure 5 the nodes t6 and t7 are of same type since their control depends on t4 and hence t6, t7 can be fused to a 

single node. Similarly we can observe that t2, t4, t1, t3, t10, t11, t12, t15, t16 can be fused to single node. But this is a 

critical thing as there is chain t10, t13; t15 where t13 depends on t10 and t15 depends on t13.Similar case is applicable to 

the chain t11, t14, t15. Hence typed fusion is applied to such chains. Figure 6 represents the data flow program 

dependence graph after applying typed fusion with a restriction that dependence chains are not merged as a single 

component. 
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Figure 6: Generation of Data Flow Program Dependence Graph for Figure 5 

 

V.     EXPERIMENTAL ANALYSES 

The experimental analysis describes the implementation of thread level data flow approach and its comparison with serial 

data flow. This thread level data flow approach is implemented in GCC. The libgomp pass of GCC was modified to 

incorporate the necessary changes to support data flow threads and frames.  

 

Table 2: Comparison of execution time of with and without thread level data flow in dual core processor 

Block size Execution Time without  data 

flow at thread level(in Seconds) 

Execution Time using data flow at 

threads level(in seconds) 

b7 400.324518 382.87848 

b8 400.324518 363.685213 

b9 400.324518 377.539737 

b10 400.324518 391.3115 

 

 

 
Figure 7: Comparison of execution time for sequential approach with Thread level Data flow approach for dual 

core processor. 

Table 3: Comparison of execution time of with and without thread level data flow in quad core processor 

 

Block size Sequential Execution Time(in 

Seconds) 

execution time using data flow at 

threads level (in seconds) 

b7 387.728347 352.973301 

b8 387.728347 340.485913 
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b9 387.728347 356.321737 

b10 387.728347 360.312115 

 

 

 
Figure 8: Comparison of execution time for sequential approach with Thread level Data flow approach for 

quad core processor. 
The analysis was conducted with the Cholesky algorithm with a square matrix of 2

12
 x 2

12
size with 20 iterations. The 

results were obtained by making use of varying block sizes (from 2
7
 - 2

10
). 

 

Block size Speed up without using data 

flow threads(in Seconds) 

Speed up using data flow at 

threads level(in seconds) 

b7 2.523 2.689 

b8 2.523 2.931 

b9 2.523 2.834 

b10 2.523 2.634 

 

Table 4: Comparison of speed up of with and without thread level data flow 

 
Figure 9: Comparison of speed up of with and without thread level data flow 

 

VI.     CONCLUSIONS 

This paper provides a proper load balancing in stream programming by making use of data driven scheduling which is 

implemented in the GCC compiler. The proposed algorithm initially generates a PDG using SSA (Static Single 

Assignment) then applying the loop unrolling. The DFPDG is generated using typed fusion. The experimental results 

show that the proposed algorithm improves the efficiency and decreases the execution time, thereby providing a proper 

load balancing. 
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