
© 2013, IJARCSSE All Rights Reserved Page | 292

 Volume 3, Issue 10, October 2013 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Deployment of Private Cloud using Open Stack: An Open Source

Cloud Computing Solution for Small and Mid-sized Organizations
 Sidharth Sachdev Amit Mahajan

 Dept. of Computer Science & Engineering Dept. of CS & IT, University of Jammu

 India India

Abstractð Cloud computing is a new concept which combines all the disciplines, business models and technologies

together to deliver IT capabilities which can be used together to implement easily and managed with minimum effort

without any cloud provider support. The goal of this paper is to build up an open source private cloud using

OpenStack (Essex) as cost effective solution for small and mid-sized organizations without spending huge amount of

money on paid cloud service providers like AWS (Amazon Web Services). This paper describes the openness,

adaptability and scalability which provide the flexibility to control the whole cloud infrastructure by using a

dashboard service at administrator and client level. This paper also describes the establishment and deployment of

cloud infrastructure (IaaS) for private network where users provide the tools for creating and managing virtual

machines over the existing resources.

Keywordsð OpenStack, private cloud, infrastructure, AWS, IaaS

I. INTRODUCTION

A. Cloud Computing

Cloud computing is a software platform that provides computing services with the help of internet. It allows users to

make use of the software and hardware which is managed by the parties at remote locations like online store, social

networking, webmail, e-commerce applications etc. With the help of a cloud computing model it provides access to

information and computer resources from anywhere in the world with network and internet connection. It provides

shared pool of resources that includes data storage space, networking facilities, computing processing power of

specialized and user applications.

Cloud Computing Models: Cloud computing has three service models:-

1) Software as a Service (SaaS): In this type of service model, the cloud provider will provide the platform for the

users to use their applications remotely like mail services , e-commerce applications etc. the users use this

service will have the common interface which helps the companies not to pay for extra charges for the licenses.

2) Platform as a Service (PaaS): In this type of service model, the cloud provider provides and manages the

platform (hardware, server operating system, databases, storage, architecture, networks and Virtualization) but

the client has to develop its application as per the need using these services provided by the cloud provider. The

client has to manage the applications and the cloud service provider manages everything else. Like google app

engine

3) Infrastructure as a Service (IaaS): In this service model, the cloud service provider provides and manages the

infrastructure (Virtualization, servers, networking and storage). This helps to avoid spending on hardware and

human resources and which reduces the return of investment risk. The client can execute and manages virtual

machines where it can use its applications, data, operating system, middleware and runtime like Amazon EC2,

Rackspace, etc.

Characteristics of Cloud computing

There are three main characteristics of cloud computing service which differs it from traditional hosting service are:-

1) On demand availability

2) Rapid elasticity (pay per use) for users

3) Resource pooling

Categories of Cloud Computing: Cloud computing has three categories under which they can be deployed: private, public

or Hybrid.

1) Private cloud: In such cloud infrastructure the cloud computing platform is operated solely for a specific

organization under the control of IT department and is managed by the organization behind the organizational

firewall. Private cloud offers the same features as public cloud and eliminates the issues related to control, data,

security etc.

2) Public cloud: in such cloud infrastructure the cloud service provider charges for their services from the

organization. Like Amazon (AWS), Microsoft and Google, etc. they own and operate the infrastructure of the

http://www.ijarcsse.com/

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 293

cloud and offer access to the services in the cloud with the help of Internet. Amazon Web Services (AWS) are

the largest public cloud provider.

3) Hybrid cloud: is a cloud infrastructure which combines both private and public cloud infrastructures together.

They're entities remained as separate but offering the benefits of both the deployment environments.

B. Open Source Cloud

Open source provides flexibility to the users to choose the product and even provide freedom to change the source code

for own userôs need. This brings openness and makes the product more effective for further future uses. This ability of

freedom and openness is encouraging more and more programmers. Who are migrating towards to work on open source

cloud packages as donôt have to pay, look over proprietary issues. An open source cloud is growing and becoming more

effective for the IT Industries and organizations who wanted to use the cloud facilities for hosting and other services. Not

only Open Stack is growing in other open source cloud are also growing like cloudstack, opennebula, eucalyptus etc.

Fig. 1 shows the growth of the 5 major cloud computing vendors over the years

[6]

The figure (1) shows the trend line of the 5 major cloud computing solutions which had grown with respect to the time.

Amazon AWS is the oldest among them and till date they are widely accepted and used. But the trend also shows that

OpenStack an open source cloud is also emerging as one of the fastest cloud computing solution. People have started

using this solution taking into account its openness and scalability to implement the cloud infrastructure in any

environments (private, public or Hybrid).

Fig. 2 shows Numbers Represents the Interest over time

[6]

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 294

The figure (2) shows that two cloud services are widely accepted in the market .The amazon always attracted more users

and is the most widely acceptable cloud but at the same time OpenStack is also gaining popularity day by day. The

statistics shows past 12 months interest of the users where OpenStack has gained more popularity. Therefore open stack

is the future for the cloud especially in an open source environment.

C. OpenStack

Open Stack is an open source free cloud computing software, released under the same terms as of apache license. It has

the ability to control extensive processes , storage and resources all through the data center, all supervised through a

dashboard that gives the admin control while enabling the clients with procurement assets through a web interface. It is a

cloud solution to provide an infrastructure as a service (IaaS). Open Stack is basically a collection of open source projects

and organizations can set up and run their cloud compute and storage infrastructure using this collection of open source

projects. NASA and Rackspace (RAX) started OpenStack project and NASA provided a code for Compute Part and

Rackspace provided hosting / storage infrastructure. Open Stack is a non-profit organization entity which is established

in September 2012, who manages and promotes distribution, development and adoption of the cloud computing software.

The foundation has already attracted more than 7,000 individual members from 100 countries and 850 different

organizations, over 190 companies including Rackspace
®
, Dell, HP, IBM, and Red Hat

®
, Canonical, Citrix, etc.

OpenStack has the ability to work in private, public and hybrid environments and at enterprise grade level.

Open stack has a modular architecture which provides users the flexibility to design the cloud as required, without any

proprietary issues related to hardware or software requirements. It further has the ability to put together with existing and

third party technologies. It uses various components to work together as a service. Which are designed to administer and

mechanize team of computing resources and can work with widely available Virtualization technologies.

 Fig. 3 shows the Working with Open Stack Components/Services

Fig. 4 shows the System Architecture of the OpenStack

[2]

D. Components of OpenStack Essex:

1. Nova component is used for providing Compute Service. It acts as the Computing controller in the OpenStack

Cloud. It provides management platform that supports the life cycle of instances within the OpenStack cloud. It

is also used to manage and mechanize the pool of computer resources which can be used to work with various

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 295

virtualization technologies or hypervisors. It does not provide virtualization of its own but uses Libvirt API to

interact with hypervisors.

2. The Glance component also called OpenStack Imaging Service. It provides registration, delivery, discovery

services for the cloud disk and server images. It also provides lookup and retrieval system for the virtual

machine images.

3. Keystone component is used to provide Identity Service. Its job is to provide all authentication systems across

the cloud infrastructure and can be combined with the existing services like LDAP which are running at the

backend directory. It provides authorization and authentication services for all components of OpenStack.

Keystone provides two ways of authentication. One is username/password based and the other is token based. A

keypair consisting of private key/public key is generated to be able to start instances on OpenStack. Which are

inserted into the instances to make password-less SSH access for the instance. This can be downloaded from the

OpenStack Dashboard.

4. Horizon component in OpenStack provides an Administrative Web - Interface. Web based dashboards can be

used to manage /administer OpenStack services.It is also used to manage the instances and Images, creating

keypairs, manipulating the Swift containers and volumes to instances etc. Apart from this, dashboard gives the

users to access the instance console, through which can be connected to an instance through VNC. OpenStack

Dashboards can be used to manage various OpenStack services. It can be used to manage instances and images,

create keypairs, attach volumes to instances, manipulate Swift containers etc. The OpenStack Dashboard is

accessible via http://<ip_address of server1>

5. Swift component provides Storage Service in the OpenStack cloud. It provides virtual object store which is

distributed, eventually for OpenStack. This component also has great capability to store large size files and large

number of files among servers in an organized way. Swift also provides redundancy and failover management.

The storage associated with the instances is non-persistent and therfore the data which is generated and stored

on the disk of the instance is removed as soon as the instance gets terminated. So we create a dedicated volume

and attach it to the running instance.

Nova controls all components and glance manages images, keystone provides authentication and authorization for all

components of OpenStack, horizon provides web interface to manage all infrastructure manually and even remotely and

swift for storage capabilities and Client can login in cloud infrastructure and run a virtual machine/ instance to deploy

service / application for cloud users using images.

II. DEPLOYMENT OF PRIVATE CLOUD USING UBUNTU 12.04 SERVER EDITION AND OPENSTACK

A. Prerequisites Hardware Requirements for OpenStack cloud

TABLE I. Hardware Requirements

 Server 1 Server 2 Client

 Also Called as Cloud

Controller Node

Also Called as compute

nodes

Client node

Processor Core i5 (x64 architecture) Core i5 (x64 architecture) Core i5 (x64 architecture)

RAM 6 GB 8 GB 8 GB

No. of NICs 2 2 1

Hard disk 750 GB 750 GB 320 GB

VT - Enabled Yes Yes Yes

Operating System 64 Bit 12.04 Ubuntu Server 64 Bit 12.04 Ubuntu Server 64 Bit 12.04 Ubuntu

Desktop

Fig. 5 shows the Server / Client implementation model (Same model we used to establish and for testing purpose)

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 296

B. Installation and Configuration Steps

To check the working of the Cloud using OpenStack, in this paper we set up the Private Cloud infrastructure using the

minimum hardware requirements as mentioned in Table I. For the establishment of the Infrastructure, we have used three

machines, out of which 2 machines have been configured as servers and 3
rd
 machine act as a client to access web

interface as described in figure (5). On Server1 with hostname MC and server2 with host NC, we installed Ubuntu Server

12.04 64 Bit Version. On Server1 also Called as Cloud Controller Node, we have installed all the components of open

stack i.e. Nova, Glance, Keystone, Horizon and Swift whereas on Server 2 called as compute node, has only nova-

compute i.e. virtual machines/instances. On Client Machine i.e. Client node, we installed Ubuntu Desktop 12.04 64 Bit

Version. This will run Dashboard Service, which is used to manage the OpenStack Cloud Infrastructure and

administrator and client can create or start instances using images. Table II describes functionality and other details of

servers and client. All the machines used should be 64 Bit (x64) bit and have Virtualization Technology Enabled. To

enable VT we need to check this option in a computer bios setup. We have connected our servers and client to private

switch. This private switch is configured with the organizational network, which is connected with the Internet.

TABLE II. Shows the details of servers and client

 Server 1 Server 2 Client

 Also Called Cloud

Controller Node

Also Called compute nodes Client node

Functionality All components of

OpenStack including

nova-compute

Nova-compute : runs

instances / virtual machines

Image Bundling and

provides a web

interface (Horizon)

Network Interfaces eth0 - Private N/W, eth1 -

Private N/W

eth0 - Private N/W, eth1 -

Private N/W

eth0 - Private N/W

IP addresses eth0 ï 192.170.1.30, eth1

- 192.168.3.1

eth0 ï 192.170.1.31, eth1 -

192.168.3.2

eth0 ï 192.170.1.32

Hostname MC NC Client

DNS servers 192.170.1.1 192.170.1.1 192.170.1.1

Gateway IP 192.170.1.1 192.170.1.1 192.170.1.1

Next section describes the steps to configure a cloud infrastructure based on OpenStack using 3 machines.

C. STEPS FOR CREATING SERVER 1 , SERVER 2 AND CLIENT FOR THE DEPLOYMENT OF OPENSTACK CLOUD

Server 1:

1) Install 64 bit version of Ubuntu server 12.04 on Server 1, After installation update the Ubuntu OS using

sudo apt-get update

sudo apt-get upgrade

2) Create a dedicated physical volume for nova-volume and Volume Group named nova-volumes.

sudo pvcreate /dev/sda6

sudo vgcreate nova-volumes /dev/sda6

3) Install bridge-utils using sudo apt-get install bridge-utils

4) Open network configuration file (/etc/network/interfaces) and configure manually

Assign eth0 ï 192.170.1.30, eth1 - 192.168.3.1

5) Install Open-SSh Server and NTP Server for Time Synchronization using

sudo apt-get install openssh-server

sudo apt-get install ntp

Add these two lines to ntp configuration file (/etc/ntp.conf)

server 127.127.1.0

fudge 127.127.1.0 stratum 10

6) Install database packages. MySQL, PostgreSQL or SQLite database packages can be used. We used

MySQL to create databases that to be used with nova, glance and keystone.

sudo apt-get install mysql-server python-mysqldb

Open the MySQL configuration file (/etc/mysql/my.cnf) and change the bind-address = 0.0.0.0

7) Create database & user for nova and then grant all privileges and set password. Same can be done for

Glance, Keystone and keystone

Command to create database: mysql -uroot -pz -e 'CREATE DATABASE nova;'

Command to create user: mysql -uroot -pz -e 'CREATE USER novadb;'

Grant all privileges for novadb on the database "nova".

mysql -uroot -pz -e "GRANT ALL PRIVILEGES ON nova.* TO 'novadb'@'%';"

Create a password for the user "novadb".

sudo mysql -uroot -pz -e "SET PASSWORD FOR 'novadb'@'%' =PASSWORD('password_text');"

We used xyz in place of password_text

8) Install keystone packages using sudo apt-get install keystone python-keystoneclient python-keystone

Open the keystone configuration file(/etc/keystone/keystone.conf) and change the admin_token =

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 297

admin and connection = mysql://keystonedb:xyz@192.170.1.30/keystone

9) Create two tenants - admin and service using

keystone tenant-create --name admin

keystone tenant-create --name service

10) Create four keystone users - admin, nova, glance and swift

keystone user-create --name admin --pass admin --email dmintest@live.com

same as for nova, glance and swift

11) Create two keystone roles - admin and Member using

keystone role-create --name admin

keystone role-create --name Member

12) Check tenants, users and roles using keystone tenant-list / user-list / role-list

13) Add Roles to Users in Tenants using

keystone user-role-add --user (USER_ID) --role (ROLE_ID) --tenant_id (TENANT_ID).

Check USER_ID, ROLE_ID & TENANT_ID from keystone tenant-list / user-list / role-list

Add a role of 'admin' to the user 'admin' of the tenant 'admin'

Add a role of 'admin' to the users 'nova', 'glance' and 'swift' of the tenant 'service'

Add a role 'Member' role to the user 'admin' of the tenant 'admin'

14) Create keystone service using

keystone service-create --name service_name --type service_type --description 'Description of the service'

 service_name can be volume, nova, swift, glance, keystone and ec2 with service_type - volume, compute,

 object-store, image, identity and ec2 respectively.

 Check keystone service list using keystone service-list

15) Create Endpoints for nova-compute using

 keystone endpoint-create --region myregion --service_id 60ebb0f03d73413393e6c49c0b67d62a --publicurl

'http://192.170.1.30:8774/v2/$(tenant_id)s' ïadminurl 'http://192.170.1.30:8774/v2/$(tenant_id)s' ï

internalurl 'http://192.170.1.30:8774/v2/$(tenant_id)s'

Same as for nova-volume, glance, swift, keystone & ec2.

16) Install Glance and glance components using

apt-get install glance glance-client glance-api glance-registry python-glance glance-common

Open glance configuration file (/etc/glance/glance-api-paste.ini) & (/etc/glance/glance-registry-paste.ini) and make

changes

tenant_name = service

admin_user = glance

admin_password = glance

 Open /etc/glance/glance-registry.conf and change

sql_connection = mysql://glancedb:xyz@192.170.1.30/glance

 And add below mentioned two lines at the end of file for authentication for /etc/glance/glance-registry.conf

 and /etc/glance/glance-api.conf

[paste_deploy]

flavor = keystone

17) Create glance schema using

sudo glance-manage version_control 0

sudo glance-manage db_sync

To test glance is properly installed run glance index and then echo $? ,

If Output is 0 means Glance is working properly otherwise not.

18) Install Nova and its components

 sudo apt-get install nova-api nova-cert nova-compute nova-compute-kvm nova-doc nova-network nova-

 objectstore nova-scheduler nova-volume rabbitmq-server novnc nova-consoleauth

19) Configure the Nova file (/etc/nova/nova.conf)

--s3_host=192.170.1.30
--ec2_host=192.170.1.30

--rabbit_host=192.170.1.30
--cc_host=192.170.1.30
--nova_url=http://192.170.1.30:8774/v1.1/

--routing_source_ip=192.170.1.30
--glance_api_servers=192.170.1.30:9292

--iscsi_ip_prefix=192.168.4
--sql_connection=mysql://novadb:xyz@192.170.1.30/nova

--ec2_url=http://192.170.1.30:8773/services/Cloud
--keystone_ec2_url=http://192.170.1.30:5000/v2.0/ec2tokens

--novncproxy_base_url=http://192.170.1.30:6080/vnc_auto.html

--vncserver_proxyclient_address=192.170.1.30
--vncserver_listen=192.170.1.30

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 298

--public_interface=eth0

--flat_interface=eth1
--flat_network_bridge=br100

--fixed_range=192.168.4.1/27
--floating_range=192.170.1.30/27
--network_size=32

--flat_network_dhcp_start=192.168.4.33

Now we need to configure our dedicated partition for nova-volume i.e sda6
20) Change the ownership of the /etc/nova folder and permissions for /etc/nova/nova.conf using

sudo chown -R nova:nova /etc/nova

sudo chmod 644 /etc/nova/nova.conf

Open nova configuration file (/etc/nova/api-paste.ini) and make changes

admin_tenant_name = service

admin_user = nova

admin_password = nova

21) Create nova schema using sudo nova-manage db sync

22) Provide a range of IPs to be associated to the instances using

sudo nova-manage network create private --fixed_range_v4=192.168.4.32/27 --num_networks=1 --

bridge=br100 --bridge_interface=eth1 --network_size=32

23) To Check nova services are working or not using nova-manage service list

24) Install OpenStack Dashboard using sudo apt-get install openstack-dashboard and then restart apache

service using service apache2 restart

25) Install swift and it components using

 sudo apt-get install swift swift-proxy swift-account swift-container swift-object xfsprogs curl python-

 pastedeploy

 Create a file named swift-disk with approx. 975 MB space that will be used as looback disk for Swift

 storage backend using sudo dd if=/dev/zero of=/srv/swift-disk bs=1024 count=0 seek=1000000 sudo

 mkfs.xfs -i size=1024 /srv/swift-disk

 Create a directory /mnt/swift_backend for mounting swift storage backend and add it to file system table for

 permanent mounting using sudo mkdir /mnt/swift_backend

26) Create some nodes for backend that to be used as storage devices and set ownership to 'swift' user and

group.

mount /mnt/swift_backend

pushd /mnt/swift_backend

sudo mkdir node1 node2 node3 node4

popd

sudo chown swift.swift /mnt/swift_backend/*

 sudo mkdir -p /etc/swift/account-server /etc/swift/container-server /etc/swift/object-server /srv/node1/device

 /srv/node2/device /srv/node3/device /srv/node4/device

 sudo mkdir /run/swift

 sudo chown -L -R swift.swift /etc/swift /srv/node[1-4]/ /run/swift

27) Rsync maintans object replicas and Enable RSYNC (/etc/default/rsync) - Set RSYNC_ENABLE=true

28) Generate a random string using od -t x8 -N 8 -A n < /dev/random and this is used if we want to add more

nodes in our setup

 Create configuration file (/etc/swift/swift.conf) and add random string

[swift-hash]

swift_hash_path_suffix = 796dc37f62886b45

29) Now Create Swift Proxy Server (/etc/swift/proxy-server.conf) and configure file

[DEFAULT]

bind_port = 8080

user = swift

swift_dir = /etc/swift

[pipeline:main]

Order of execution of modules defined below

pipeline = catch_errors healthcheck cache authtoken keystone proxy-server

[app:proxy-server]

use = egg:swift#proxy

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 299

allow_account_management = true

account_autocreate = true

set log_name = swift-proxy

set log_facility = LOG_LOCAL0

set log_level = INFO

set access_log_name = swift-proxy

set access_log_facility = SYSLOG

set access_log_level = INFO

set log_headers = True

account_autocreate = True

[filter:healthcheck]

use = egg:swift#healthcheck

[filter:catch_errors]

use = egg:swift#catch_errors

[filter:cache]

use = egg:swift#memcache

set log_name = cache

[filter:authtoken]

paste.filter_factory = keystone.middleware.auth_token:filter_factory

auth_protocol = http

auth_host = 127.0.0.1

auth_port = 35357

auth_token = admin

service_protocol = http

service_host = 127.0.0.1

service_port = 5000

admin_token = admin

admin_tenant_name = service

admin_user = swift

admin_password = swift

delay_auth_decision = 0

[filter:keystone]

paste.filter_factory = keystone.middleware.swift_auth:filter_factory

operator_roles = admin, swiftoperator

is_admin = true

30) Configure Account server (/etc/swift/account-server/1.conf)

[DEFAULT]

devices = /srv/node1

mount_check = false

bind_port = 6012

user = swift

log_facility = LOG_LOCAL2

[pipeline:main]

pipeline = account-server

[app:account-server]

use = egg:swift#account

[account-replicator]

vm_test_mode = no

[account-auditor]

[account-reaper]

 And execute these commands to configure other Swift Container Server. These commands basically copy

configurations from 1.conf to2.conf and so and so and then make changes that differentiate between them

and each of file correspond to a device under /srv

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 300

 sudo cp /etc/swift/account-server/1.conf /etc/swift/account-server/2.conf

 sudo cp /etc/swift/account-server/1.conf /etc/swift/account-server/3.conf

 sudo cp /etc/swift/account-server/1.conf /etc/swift/account-server/4.conf

 sudo sed -i 's/6012/6022/g;s/LOCAL2/LOCAL3/g;s/node1/node2/g' /etc/swift/account-server/2.conf

 sudo sed -i 's/6012/6032/g;s/LOCAL2/LOCAL4/g;s/node1/node3/g' /etc/swift/account-server/3.conf

 sudo sed -i 's/6012/6042/g;s/LOCAL2/LOCAL5/g;s/node1/node4/g' /etc/swift/account-server/4.conf

31) Configure Swift Container Server (/etc/swift/container-server/1.conf)

Configuration is same as we have done in account server; few below mentioned lines are changed

bind_port = 6011

pipeline = container-server

[app:container-server]

use = egg:swift#container

[container-replicator]

[container-updater]

[container-auditor]

[container-sync]

Copy 1.conf text to other conf file as we have done swift Account server and set the bind posts to 6021,

6031 and 6041 for other nodes.

32) Configure Swift Object Server (/etc/swift/object-server/1.conf)

bind_port = 6010

pipeline = object-server

[app:object-server]

use = egg:swift#object

[object-replicator]

vm_test_mode = no

[object-updater]

[object-auditor]

Copy 1.conf text to other conf file as we have done swift Account server and set the bind posts to 6020,

6030 and 6040 for other nodes.

33) Swift Rings maintains the information about physical location of objects , their replicas and devices.

Configure Swift Rings

 cd /etc/swift

 pushd /etc/swift

 sudo swift-ring-builder object.builder create 18 3 1

 sudo swift-ring-builder container.builder create 18 3 1

 sudo swift-ring-builder account.builder create 18 3 1

 Add zones and balance the rings using

 swift-ring-builder <builder_file> add <zone>-<ip_address>:<port>/<device> <weight>

 Change ownership of /etc/swift directory to óswiftô using sudo chown -R swift.swift /etc/swift

34) Check Swift using swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swift -K swift stat

Valid output shows sift is working properly else error gets displayed on screen.

Server 2:

1) Install 64 bit version of Ubuntu server 12.04 on Server 2, After installation update the OS using below

mentioned commands

sudo apt-get update

sudo apt-get upgrade

2) And then we install bridge-utils using sudo apt-get install bridge-utils

3) Open network configuration file and configure manually (/etc/network/interfaces)

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 301

Assign eth0 ï 192.170.1.31, eth1 - 192.168.3.2

4) Install Open-SSh Server and NTP Server for Time Synchronization using

sudo apt-get install openssh-server

sudo apt-get install ntp

Add server1 IP in ntp configuration file (/etc/ntp.conf) for time sync from server1 to server2

server 192.170.1.30

5) Configure Network Configurations manually. Assign eth0 ï 192.170.1.31, eth1 - 192.168.3.2

Install nova ïcompute using sudo apt-get install nova-compute

6) Open nova configuration file and make changes as we have done in server1

And check that all services of nova are working or not using sudo nova-manage service list

Client:

1) Install 64 bit version of Ubuntu Desktop 12.04 on Client. , After installation update the OS using below

mentioned commands

sudo apt-get update

sudo apt-get upgrade

2) Configure Network Configurations manually (/etc/network/interfaces). Assign eth0 ï 192.170.1. 32

3) Install NTP Client and Open-SSh Server using

sudo apt-get install ntp

sudo apt-get install openssh-server

4) Install client tools using sudo apt-get install python-novaclient glance-client swift

5) Install hypervisors , we used KVM so we can install KVM using sudo apt-get install qemu-kvm

6) Open Firefox Browser and enter IP address of Server 1 (192.170.1.30)

7) Add either customized image or cloud ready images to glance as shown in figure (6) (cloud ready images

are available on internet)

 glance add name="cirros" is_public=true container_format=ovf disk_format=qcow2 < cirros-0.3.0-

 x86_64.img

 and to display images added to glance run command nova image-list

Fig. 6 displays the images added to glance and instance snapshot

8) Create public/private key either from dashboard or from Command User Interface using

nova keypair-add --pub_key ~/.ssh/id_rsa.pub demo

and to display keys execute command nova keypair-list

9) Add security group rules either from dashboard or from CUI using

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 302

nova secgroup-add-rule default tcp 8080 8080 0.0.0.0/0

nova secgroup-add-rule default tcp 80 80 0.0.0.0/0

and display security group rules added to default run nova secgroup-list-rules default or check from

Dashboard as shown in figure (7).

Fig. 7 shows the Security Group Rules already added to our admin account

10) Run Instance / Virtual Machine from image (automatically provision of IP address for instance)

nova boot --flavor 1 --image <image_id> --key_name mykey --security_group mykey myinstance

 List Instances: nova list

 Reboot Instance: nova reboot <Instance ID>

Delete Instance: nova delete <Instance ID> or we can do from Dashboard (figure 8)

Fig. 8 shows that instance / virtual machine running on our architecture with IP 192.168.4.34 that was

provided from Pool and dedicated volume for that virtual machine / instance

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 303

11) Create a dedicated volume for instance

nova volume-create --display_name demoinstance 1

and to list volume using nova volume-list and Attach volume to that Instance from Dashboard

12) Now our infrastructure is ready and we can establish/upload particular service or application and install

multiple VM on our private cloud as we are using cirros os in figure (9) & figure (10).

Fig. 9 shows Logging in cirros operating system

Fig. 10 shows ls/ (list) command on cirros operating system

Sachdev et al., International Journal of Advanced Research in Computer Science and Software Engineering 3(10),

October - 2013, pp. 292-304

© 2013, IJARCSSE All Rights Reserved Page | 304

III. CONCLUSIONS

In the paper we tried to build private cloud hosting infrastructure with minimum hardware requirements that can be used

for small scale and medium scale developments. Such infrastructure can be used for the deployment purposes without

HA (high availability). We can expand this architecture by adding more nova compute servers and other hardware

relating to performance and storage. We executed instances / virtual machines on cirros OS for testing purpose and

productivity. We can create multiple projects for multiple clients under one infrastructure and admin has the power to

manage them. Therefore the client can launch instances from images using particular security group and keyboard and

can deploy services. This Open Stack is highly beneficial for communities / organizations/ institutions / research centers

that do not have enough funds to deploy high grade cloud services at their own place. Especially for academic

institutions and Universities that donôt have funds and they have talked to management of the resources. Like in

universities, where all departments have own resources (hardware), websites and online storage space / web space. And

even work independently and every department has to face failure and delay issues. And this model will eliminate all the

issues and maintain centralized core cloud computing for maintenance. OpenStack Cloud Infrastructure is very cost-

effective, flexible and elastic and if any organization goes to any paid cloud providers like AWS, that organization have

to pay thousands of USD as subscription charges and technical support charges. And we can implement the same kind of

services using OpenStack. The main benefit of Open Stack is that it is open source and day by day it is improving, many

engineers from all over the world are working on it ï detecting bugs, creating solutions for bugs, and making OpenStack

effective.

Future Scope: Since this model is for the deployment in small and mid-sized organizations but for future scope it can be

further strengthened by incorporating HA (High availability) to secure the hardware and software failure. Security of the

cloud is an important issue. Since users of the cloud are not finding themselves comfortable with the security of their data.

These issues need to be properly addressed for the further improvement of the private cloud infrastructure for its better

adaptability.

ACKNOWLEDGMENT

We would like to thank Prof. Vibhakar Mansotra (Head of Department, Computer Science and Information Technology)

for providing the opportunity to work on the cloud infrastructure by providing hardware and network access and

secondly we would like to thank authors of instruction manual (CSS Corp Open Source Services) and for providing time

to time support.

REFERENCES

[1] Privacy Commissioner of Canada (OPC), ñFact Sheet: Introduction to Cloud Computingò, October 2011.

[2] CSS Corp Private Limited, ñOpenStack Compute Starter Guideò

[3] Omar Sefraoui, Mohammed Aissaoui and Mohsine Eleuldj, ñOpenStack: Toward an Open-source Solution for

Cloud Computingò, International Journal of Computer Applications 55(3):38-42, October 2012.

[4] Kristen Hemmings , Article: 3 Types of Cloud Service Models [http://blog.appcore.com/blog/bid/168247/3-Types-

of-Cloud-Service-Models]

[5] Kate Craig-Wood, Article: IaaS vs. PaaS vs. SaaS definition, Available: http://www.katescomment.com/iaas-paas-

saas-definition/

[6] Google Trends [Online], Available: http://www.google.co.in/trends/

[7] Primoģ Cigoj, ñSecurity Aspects of OpenStack - Seminar Iò, Ljubljana, 2012.

[8] Webopedia Article: Private Cloud, Available: http://www.webopedia.com/TERM/P/private_cloud.html

[9] WhatIs.com, Article: CloudStack, Available: http://whatis.techtarget.com/definition/CloudStack

[10] Webopedia, Article: CloudStack, Available: http://www.webopedia.com/TERM/C/cloudstack.html

[11] Wikipedia, Article: CloudStack, Available: http://en.wikipedia.org/wiki/Apache_CloudStack

[12] searchcloudcomputing.techtarget.com, Article: Cloud Computing

 Available: http://searchcloudcomputing.techtarget.com/definition/cloud-computing

[13] Wikipedia, Article: Cloud Computing, Available: http://en.wikipedia.org/wiki/Cloud_computing

[14] Wikipedia, Article: OpenStack, Available: http://en.wikipedia.org/wiki/OpenStack

[15] IBM, ñCloud computing for the enterprise: Part 1: Capturing the cloudò, Available:

http://www.ibm.com/developerworks/websphere/techjournal/0904_amrhein/0904_amrhein.html

[16] Wikipedia, Article: OpenNebula, Available: http://en.wikipedia.org/wiki/OpenNebula

[17] OpenStack Official Page [Online], Available: http://www.openstack.org/software/

[18] OpenStack Foundation [Online], Available: http://www.OpenStack.org/foundation/

[19] Wikipedia, Article: OpenStack, Available: http://en.wikipedia.org/wiki/OpenStack

[20] Rackspace Official OpenStack Page [Online], Available: http://www.rackspace.com/cloud/OpenStack/

[21] searchcloudprovider.techtarget.com, Article: Eucalyptus,

Available: http://searchcloudprovider.techtarget.com/definition/Eucalyptus

