
© 2012, IJARCSSE All Rights Reserved Page | 450

 Volume 2, Issue 5, May 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Performance of Cache in Distributed Systems
Neha Pathak Prof. Dinesh Chandra Jain

 Research Scholar in Dept. of CSE Reader , Dept. of CSE

 S.V.I.T.S S.V.I.T.S
 Indore (M.P) Indore (M.P)

ABSTRACT: This paper introduces you to the concept of file caching, file caching policies and cache consistency

and performance of cache for distributed computing environment. We will see that carefully constructed

distributed concept can lead to lower server load and better overall system performance than in centralized

concepts. In this paper we are considering the network file system, Andrew file system and sprite file system to

study.

Key words: Distributed File Caches, Network File System, Andrew File System, Sprite File System, Cache

Consistency.

I. INTRODUCTION

File caching is the method that reduces the inherent

speed difference between processor and disk. The disks

are slow and memory is fast and file cache forms an

intermediate storage between these two for centralized

systems. In distributed system file access is based on a

client-server computing model and have to propagate

through various instances. This concept introduces
opportunity for caching at various levels like the server,

the client, or the network. We can employ caching to

improve system performance. There are four places in a

distributed system where we can hold data: on the

server‟s disk, in a cache in the server‟s memory, in the

client‟s memory, on the client‟s disk. The first two

places are not an issue since any interface to the server

can check the centralized cache. It is in the last two

places that problem arises and we have to consider the

issue of cache consistency. There are several

approaches we have:

 Write-through

All access would require checking with the server first

(adds network congestion) or require the server to

maintain the state on who has what files cached. Write-

through also does not reduce the congestion on

writes.

 Delayed writes

 Data can be buffered locally (where consistency

suffers) but files can be updated periodically. A single

bulk write is far more efficient than the lots of little

writes every time any file contents are modified.
Unfortunately the semantics become ambiguous.

 Write on close

 This is admitting that the file system uses session

semantics.

 Centralized control

 Server keeps track of who has what opened in

which mode. We would have to support a stateful

system and deal with signalling traffic.

I. ARCHITECTURE of NETWORK FILE

SYSTEM(NFS)[7][10]

In computing, a distributed file system or network file

system[1] is any file system that allows access to files

from multiple hosts sharing via a computer network.

This makes it possible for multiple users on multiple

machines to share files and storage resources. The client

nodes do not have direct access to the underlying block
storage but interact over the network using a protocol.

This makes it possible to restrict access to the file

system depending on access lists or capabilities on both

the servers and the clients, depending on how the

protocol is designed.

Fig1: NFS

When an application program executes, it calls the

operating system to open a file, or to store and retrieve

data in files. The file access mechanism accepts the

request and automatically passes it to either the local

file system software or to the Network File System

client, depending on whether the file is on the local site

or on a remote site. When it receives a request, the

http://www.ijarcsse.com/

Volume 2, Issue 5, May 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 451

client software uses the Network File System protocol

to contact the appropriate server on a remote machine
and perform the requested operation. When the remote

server replies the client software returns the result to the

application program.

II. CACHING POLICIES in NETWORK

FILE SYSTEM(NFS)[1][2]
All caching models have a number of common features.

Unless otherwise noted caches are assumed to operate

at the file system block level, with a block size of 4-

kBytes and a write-back policy with server driven

invalidations. A cache replacement strategy of least

recently used (LRU) is used in all cases. Although this

strategy is not optimal, many studies have shown that it
is closed to optimal. All models use fully associative

caches which give good performance and only require

minimal additional overhead in the case of file accesses,

which are rather expensive operations already.

1. Fixed-Size Caches

The following reference models are used in the

evaluation process. These models have been chosen to

give some upper and lower bounds on specific

distribution concepts. They are not intended to be

sophisticated implementations of these concepts. The

order of presentation is approximately an order of

increased complexity. A more detailed description of

the models can be found:

 Server Cache Only(SCO):

Server caching with cache less clients used as a

reference point for comparing other policies.

This model requires every client access to be

forwarded to the server, resulting in substantial

network and server load. It provides an upper

bound on network traffic induced by the file

system. The centralized design imposes strong

limitations on scalability.

 Local Disk(LOD):

This model assumes each client to use a local

disk for file storage and also assumes a

memory cache to be operated by each client.

The server‟s role is only that of a coordination

instance, controlling the traffic flow between

clients. Our interest is in the cache hit rates. As

the client server traffic does not contribute to

this measure it has been omitted. This model

presents the most optimistic view of a

completely distributed file service, where all

accesses can be fulfilled locally. Any realistic

implementation would also induce some client-

server and client-client traffic.

 No Coherency(NOC):

With this model we assume a configuration

with server and client caches. Compared to

SCO the traffic on the network is reduced by

the introduction of the additional caching level

at the clients. Multi-client cache consistency is

not modelled in this approach, thus reducing

the network load to an absolute minimum.

Only misses in the client cache and cache

write-back operations generate traffic on the

network. This approach presents an

unrealistically optimistic network load.

Realistic implementations would include

higher network load due to coherency traffic.

 Write Through All(WTA):

An implementation of the NOC approach with

added coherency traffic is presented with this

model. WTA uses the easiest way to guarantee

consistency in the system, which is a write-

through caching scheme. All changed blocks

are transferred from client to server as part of

the write operation. This guarantees that the

server is always in possession of the most

recent version of every block and thus can

service requests from other clients with up-to-

date data. As many files are only used by one

client, this protocol generates lots of

unnecessary operations on the network and on

the server. It is intended as a pessimistic model

for guaranteeing global consistency on the

block level. The amount of write traffic from

clients to the server is the same as in the SCO

model.

 Write Share Sequential(WSS):

Where as WTA writes back blocks which

could be kept locally without degrading client

cache coherency, WSS seeks to eliminate this

additional traffic. Analyzing file access traffic

reveals that most of the written files are not

actually shared between clients. Only a small

fraction of files are actively shared. By using

different write policies for shared and non-

shared files the excess coherency traffic can be

eliminated. WSS uses a write-back policy for

non-shared files, which is dynamically

changed to write-through as soon as file

sharing[6] is detected by the server. This

guarantees a consistent view on the server.

However, clients may still read old versions of

blocks from their local caches. Although this

drawback is acceptable for some applications.

Although this drawback is acceptable for some

application, it might not be desirable in general

and can be eliminated by the next algorithm.

 Write Share Concurrent(WSC):

To overcome the coherency problem inherent

in WSS, WSC uses a slight modification of the

protocol. Instead of changing the write policy

from write-through when a file is shared, the

file caching policy is changed to be non-

Volume 2, Issue 5, May 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 452

cacheable on the clients. This forces the only

version of the file to be kept on the server,

which guarantees consistency under any

circumstances. This approach loads the server

with the burden of handling all shared file

accesses. However, as long as the file sharing

ratio is not too high this approach is

acceptable.

2. Remote Memory Variable-Size Client

Caches

Besides variations in caching policies as presented in

the previous section, another orthogonal direction to

explore is the usage of the network, i.e. remote memory

accesses, to fulfil local cache misses. We investigate the

use of remote memory by allowing each client to split

its local cache into two distinct regions. One region is

used to hold local cache contents, whereas the other

region is exported to be used by other clients.

 Splitting cache memory into two regions and

exporting part of it to other clients reveals two

questions. How much memory should be used locally,

and which clients are allowed to use the exported

regions. Considering the overall performance of the

system as the target to be optimized, it can be proven

that an optimal solution to this partitioning problem

exists. The optimum, i.e. the minimum total number of

misses in the whole system, is reached when the

derivatives of all clients‟ miss functions with respect to

their cache size are equal.

We have considered this strategy by making two sets of

runs over the trace data; during the first set the optimal

cache partitioning for various global cache sizes has

been collected. The second set of runs uses these

optimal cache partitions during its operation. In a

production environment this two stage process needs to

be replaced by a one stage process that uses an on-line

cache partition predictionalgorithm.

Fig2 Communication process in NFS

III. PERFORMANCE[5]

NFS performance was generally found to be slower

than accessing local files because of the network

overhead. To improve performance, reduce network
congestion and reduce server load. File data is cached at

the client. Entire pathnames are also cached at the client

to improve performance for directory lookups.

 Server Caching
Server caching is automatic at the server in that the

same buffer cache is used as for all other files on the

server. The differences for NFS-related writes in that

they are all write-through to avoid unexpected data

loss if the server dies.

 Client Caching

The goal of client caching is to reduce the amount of

remote operations. Three forms of information are
cached at the client: file data, file attribute information

and pathname bindings. We cache the result of read,

readlink, getattr, lookup and readdir operations. The

danger with caching is that inconsistencies may arise.

NFS tries to avoid inconsistencies (and/or increase

performance) with:

 Validation-if caching one or more blocks of a

file, save a time stamp. When a file is opened

or if the server is contacted for a new data

block, compare the last modification time. If

the remote

IV. ARCHITECTURE of ANDREW FILE

SYSTEM(AFS)[5][8]

The Andrew File System (AFS) is a distributed

networked file system which uses a set of trusted

servers to present a homogeneous, location-transparent

file name space to all the client workstations

Modification time is more recent, Invalidate the cache.

Volume 2, Issue 5, May 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 453

Fig. 3 AFS

 Validation is performed every three seconds on

open files.

 Cached data blocks are assumed to be valid for

three seconds.

 Cached directory blocks are assumed to be

valid for thirty seconds.

 Whenever a page is modified, it is marked

dirty and scheduled to be written

(asynchronously). The page is flushed when

the file is closed.

The file name space on an Andrew workstation is

partitioned into a shared and local name space. The

shared name space (usually mounted as /afs on the Unix

filesystem) is identical on all workstations. The local

name space is unique to each workstation. It only
contains temporary files needed for workstation

initialization and symbolic links to files in the shared

name space.Clients may access files from any

workstation using same name space. When file is open

and closed only at that time client workstation interact

with server.

V. CACHING POLICIES in ANDREW FILE

SYSTEM(AFS)[6]

 Cache Consistency

 Fig. 4 Cache Consistency

Because of callbacks and whole-file caching, the cache

consistency model provided by AFS is easy to describe

and understand. When a client (C1) opens a file, it will

fetch it from the server. Any updates it makes to the file

are entirely local, and thus only visible to other

applications on that same client (C1); if an application

on another client (C2) opens the file at this point, it will

just get the version that is stored at the server which

does not yet reflect the changes being made at C1.

When the application at C1 finishes updating the file, it

calls close() which flushes the entire file to the server.
At that point, any clients caching the file (such as C2)

would be informed that their callbacks are broken and

thus they should not use cached versions of the file

because the server has a newer version. In the rare case

that two clients are modifying a file at the same time,

AFS naturally employs what is known as a last writer

wins approach. Specifically, whichever client calls

close() last will update the entire file on the server last

and thus will be the winning file, i.e., the file that

remains on the server for others to see. The result is a

file that is either one client‟s or the other client‟s. Note
the difference from a block-based protocol like

NFS[12]: in such a block-based protocol, writes of

individual blocks may be flushed out to the server as

each client is updating the file, and thus the final file on

the server could end up as a mix of updates from both

Volume 2, Issue 5, May 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 454

clients; in many cases, such a mixed file output would

not make much sense (i.e., imagine a JPEGx image
getting modified by two clients in pieces; the resulting

mix of writes would hardly make much sense).

VI. PERFORMANCE[11]

One of the reason AFS is popular in large complex

environment is because it allows centralized file and

back up without the whole system falling apart when

loaded. The cost of copying a file over the net can vary

widely, based on network load, workstation load, server

I/O load. These variables can make a difference in the

performance of the application, but over time, they even

out. Usually we assume that AFS file are as fast as non
AFS and for the vast majority of file, this is true.

VII. ARCHITECTURE of SPRITE FILE

SYSTEM[12]

Fig. 5 SFS

When a process makes a file access, it is presented first

to the cache of the process‟s workstation („„file

traffic‟‟). If not satisfied there, the request is passed

either to the local disk, if the file is stored there („„disk

traffic‟‟), or to the server where the file is stored
(„„server traffic‟‟). Servers also maintain caches in order

to reduce their disk traffic.

VIII. CACHING POLICIES in SPRITE

FILE SYSTEM[9]
The policy used to write dirty blocks back to the server

or disk has a critical effect on the system‟s performance

and reliability. The simplest policy is to write data

through to disk as soon as it is placed in any cache. The

advantage of write-through is its reliability: little

information is lost when a client or server crashes.
However, this policy requires each write access to wait

until the information is written to disk, which results in

poor write performance.

An alternate write policy is to delay write-backs:

blocks are initially written only to the cache and then

written through to the disk or server some time later.

This policy has two advantages over write-through.

First, since writes are to the cache, write accesses

complete much more quickly. Second, data may be

deleted before it is written back, in which case it need

not be written at all. For Sprite, we chose a delayed-

write policy. This policy avoids delays when writing

files and permits modest reductions in disk/server
traffic, while limiting the damage that can occur in a

crash.

 Cache Consistency

Sprite guarantees that whenever a process reads data

from a file, it receives the most recently written data,

regardless of when and where the data was last written.

We did this in order to make the user view of the file

system as clean and simple as possible, and to

encourage use of the file system as a shared system-

wide store for exchanging information between

different processes on different machines. We hope that
shared files will be used to simplify the implementation

of system services such as print spoolers and mailers.

Of course, we still expect that concurrent write-sharing

will be infrequent, so the consistency algorithm is

optimized for the case where there is no sharing.

IX. PERFORMANCE[11]

The high performance attainable with client caches

casts doubts on the need for local disks on client

workstations. For users considering the purchase of a
local disk, our advice is to spend the same amount of

money on additional memory instead. We believe that

this would improve the performance of the workstation

more than the addition of a

local disk: it would not only improve file system

performance by allowing a larger cache, but it would

also improve virtual memory performance.

X. COMPARISON[12]

XI. CONCLUSION

From the above consideration we conclude that if a file
in NFS or Andrew is open simultaneously on several

clients and one of them modifies it, the other clients will

not see the changes immediately; users are warned not

system cache

location

cache

size

writing

policy

consistency

guarantees

cache

validation

NFS Memory Fixed On close

or 30

sec.

delay

Sequential Ask server

on open

Andrew Disk Fixed On close Sequential Server calls

client when

modified

Sprite Memory Variable 30 sec.

delay

Sequential,

Concurrent

Ask server

on open

Table 1. Comparison of file systems.

Volume 2, Issue 5, May 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 455

to attempt concurrent write sharing. But SFS permits

both concurrent and sequential write sharing. SFS uses
high-performance kernel-to-kernel RPC mechanism,

delayed writes, and kernel implementation but AFS

uses user-level implementation. There is a “disk-full”

condition arise in SFS, we can „„write‟‟ system call if

the disk is full in which each client is given a number of

blocks from which it can allocate disk space. If the

client uses up its limit, it requests more blocks from the

server. This remove the above “disk-full” condition.

XII. FUTURE WORK

As we have seen various approaches to file caching,

performance and to assure cache consistency in NFS,
AFS and SFS. We can implement those caching policies

using trace driven simulation with trace data available

from a measured, real workload.

ACKNOWLEDGMENT

 Neha Pathak pursuing Master Of Engineering in

Computer science branch from SVITS indore. She has

done research work in the area of distributed systems.

 I would like to thanks to Prof. Dinesh Chandra

Jain for supporting in this research paper.

REFERENCES

 [1] Klauser Arty, Posch Reinhard :

“Distributed Caching In Networked File

System”, Institute of applied information

processing and communications Graz

University of technology,Austria,june 1995.

 [2] The NFS Distributed File Service:

NFS white paper, Sun Microsystems, March

1995

http://www.sun.com/software/white-paper/wp-

nfs/

 [3] [Baker, Hartman, et al.1991] Baker,

M.G., Hartman, J.H. Kupfer, M.D., Shirriff,

K.W., Ousterhout, J.K.: “Measurements of a

Distributed File System”; Technical report,

University of California at Berkeley, Computer

Science Division, July 1991, also appeared in

Proceedings of the 13th Symposium on

Operating Systems Principles, Oct. 1991.

 [4] [Biswas et al.1994] Biswas, P.,

Ramakrishnan, K.K., Towsley, D., Krishna,

C.M.: “Performance Benefits of Non-Volatile

Caches in Distributed File Systems”;
Concurrency-Practice and Experience,

6,4(1994), 289-323.

 [5] “Distributed File System Design”

Paul Krazyzanowski, rutgeers University-CS

417:Distributed System.

 [6] M. L. Kazar. Synchronization and

caching issues in the Andrew File System. In

Proceedings of the USENIX Winter Technical

Conference, February 1988.

 [7] D. Walsh, B. Lyon, G. Sagar, J.

Chang, D. Goldberg, S. Kleiman, T. Lyon, R.
Sandberg, and P. Weiss. Overview of the Sun

Network File System. In Proceedings of the

1985 Winter Usenix Technical Conference,

January 1985.

 [8] IBM‟s Transarc division provides the

commercial AFS products. Some overview

info on AFS can be found at

http://www.transarc.ibm.com/Product/EFS/ind

ex.html

 [9] Nelson, Welch, Ousterhout 1988]

Nelson, M. N., Welch, B. B., Ousterhout, J.

K.:”Caching in the Sprite Network File

System”; ACM Transactions on Computer

Systems, 6, 1(1988), 134-154.

 [10][SAND85]
Sandberg, R. et al. „„Design and

Implementation of the Sun Network

Filesystem.‟‟ Proceedings of the USENIX 1985

Summer Conference, June 1985, pp. 119-130.

 [11][HOWA87]

Howard, J.H., et al. „„Scale and Performance

in a Distributed File System.‟‟ ACM

Transactions on Computer Systems, to appear.

 [12] Michael N. Nelson, Brent B. Welch, John

K. Ousterhout „„Caching in the Sprite Network

File System‟‟, Computer Science Division

(EECS), University of California,

Berkeley, CA 94720.

