
 Volume 2, Issue 3, March 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Cluster Computing Using PVM

Rafiqul Zaman Khan Md Firoj Ali
Department of Computer Science Department of Computer Science

Aligarh Muslim University Aligarh Muslim University

Aligarh (U.P), India Aligarh (U.P), India

 rzk32@yahoo.co.in

Abstract─ When the execution time for a serial program is larger and there exists inherent parallelism in it then it is possible to design

a parallel program that can be executed on more than one processor producing low execution time. In this paper, we represented the result

of a serial matrix multiplication and the result of parallel matrix multiplication using Parallel Virtual Machine (PVM) using four PCs of

dual core each. The result shows a better improvement on the performance when the program is executed in parallel. This implies that the

bigger problem can be solved efficiently using PVM.

Key Words─ Parallel Virtual Machine (PVM), Speed up and Efficiency

I. INTRODUCTION

Massively Parallel Processors (MPP) and Heterogeneous

Computing (HC) are two important parallel and distributed

computing paradigms. MPP is much faster than HC. But HC

costs much less than the MPP. If performance is more

important, MPP is the first option. Parallel Virtual Machine

(PVM) was developed for the purpose of efficient

heterogeneous computing.

PVM is an integrated software tools and libraries that are

mainly designed towards networks of workstations. The

central notion to the design of PVM is virtual machine

concept. Virtual machine is defined as the collection of

heterogeneous computers connected by a network which

appears to a user as a single large computation system [1]. So

using the combined speed and storage of many computers, the

large computational problem can be solved with more cost

effectively. The PVM system has been used for applications

such as molecular dynamics simulations, superconductivity

studies, distributed fractal computations, matrix algorithms,

and in the classroom as the basis for teaching concurrent

computing. The PVM system consists of two parts. The first

part is a daemon which is known as pvmd3 and simply known

as pvmd that exists in all the computers making up the virtual

machine. The second part of the system is a library of PVM

interface routines [3, 5].This library holds the functionally

complete user callable routine for message passing, spawning

process, co-coordinating tasks and modifying virtual

machines.

PVM is more preferable than other heterogeneous computing

tools for the following reasons:

 It is freely available standard software

 It can manage the heterogeneity more efficiently than

other software.

 Virtual machine concept empowers the quality of this

software.

 It has the ability of process control, group control, error

handling and message passing.

For the heterogeneous computing a cluster of four

computers was built in the Department high speed LAN. PVM

was installed in every system.

This paper is organized as installation and configuration of

PVM, running both example program and own program, some

problems and solution and the conclusion.

II. INSTALLATION of PVM

A. Step1

 Download the software package from

http://www.netlib.org/pvg3

We downloaded pvm3.4.6.tgz in the home directory i.e.,

/home/mpiuser where mpiuser was my user name.

B. Step2

Going to the terminal and unpacked the software in the

home directory. The unpacking process will automatically

http://www.ijarcsse.com/
mailto:rzk32@yahoo.co.in
http://www.netlib.org/pvg3

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 21

create directory named pvm3 in the home directory. Pvm3

directory contains twenty one directory and thirteen files.

Command: $tar zxvf pvm3.4.6.tgz

C. Step3

Opened the .bhrc file through terminal using vi editor and set

the following lines in the file [3] and closed the file.

The .bhrc is a hidden file of course and can be vied as:

$home

$ls –a

$vi .bhrc

Going to the insert mode add the following lines as:

PVM_ROOT=$HOME/pvm3

PVM_DPATH= PVM_ROOT/lib/pvmd

Export PVM_ROOT PVM_DPATH

D. Step4

Going to pvm3 directory ($cd pvm3) type make ($make). This

would make pvm(the PVm console), pvmd3(the pvm

daemon), libpvm3.a(PVM C/C++ library), libfpvm3.a (PVM

Fortran library) and libgpvm3.a (PVM group library). All

these files would be placed in the $/pvm3/lib/LINUX and

pvmgs (PVM group server) would be placed in

$/pvm3/bin/LINUX.

III. CONFIGURATION

A. Step1

 Open .rhosts file in the home directory ($ vi .rhosts) and

added the name of each computer as:

f1

f2

f3

f4

Where f1, f2, f3and f4 are the name of each

node(computer) in the cluster of four computers.

B. Step2

Set the following environment variables in .bashrc file as:

export PVM_ARCH=’$PVM_ROOT/lib/pvmgetarch’

export PVM_ROOT= $HOME/pvm3/xpvm

export PATH =$PATH:$PVM_ROOT/lib

export PATH==$PATH:$PVM_ROOT/lib/$PVM_ARCH

C. Step3

Going to the pvm3 directory and again executed make

command.

D. Step4

Restart the computer and type pvm in terminal in the home

directory. If a prompt pvm> is got means pvm is successfully

installed.

IV. COMPILING AND RUNNING A PROGRAM

There are numbers of programs present in a subdirectory

example in pvm directory under the home director. For

compiling any program suppose hello.c and hello_other.c

simply type on the terminal as follow:

$aimk hello hello_other

This will make an object code corresponding to the source

code in the directory /home/bin/LINUX. Before running any

program pvm should be active mode that means the command

pvm must be executed. There are two ways of running a

program: i) going to the directory LINUX execute the

command ./hello or ii) going to the example directory execute

the command pvm> spawn-> hello.

A. Compiling and Running Own Program

Create your own directory (say myprog) in the home

directory. Copy the Make.aimk file to myprog directory from

the example directory.Let a program named matrixmul.c be

executed. Copy this program to the myprog directory. Make

an entry about matrixmul.c to the Make.aimk file like the

other program entry as hello.c program there.

V. PERFORMANCE MEASUREMENT

Mainly two important parameters are used in measuring the

performance of a parallel algorithm.

A. Speed up

Speed up of a parallel algorithm is the ratio of execution

time when the algorithm is executed sequentially to the

execution time when the same algorithm is executed by more

than one processor in parallel. Speed up [4] can be

mathematically represented as: Sp=Ts/Tp, where Ts is

sequential execution time, Tp is parallel execution time. In

ideal situation, the speed up is equal to the number of

processor in parallel but it is always less than the ideal one

because the other important factors in a cluster like

communication delay, memory access delay reduces the speed

up.

B. Efficiency

It is the measure of the contribution by the processors to an

algorithm in parallel. Efficiency [4] can be measured as Ep=

Sp/p (0>Ep<1) where Sp is the speed up and p is the number of

processors in parallel. The Value of Ep is closure to 1

indicates an efficient algorithm.

VI. PARALLEL MATRIX MULTIPLICATION

Suppose, n is the number of rows of matrix A and p is the

number of processors then Matrix A can be partitioned into

n/p rows which will be assigned to the local-memory (LM) of

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 22

 Data Distribution

Data Collection

f1

f2 f3 f4

f2 f3 f4

f1

n/p rows of matrix A and Matrix B are broadcasted by

node f1 to f2,f3 and f4

Node f1 collected the results from f2, f3 and f4

each processor. Matrix B is made available to all the

processors [3].

In distributed memory implementation, one processor

(master processor) has both the matrix A and B in its LM.

Master processor distributes the n/p rows of matrix A to each

processor and broadcast matrix B to each processor and

collect the result after the completion of computations [2, 3].

Fig 1 shows the data distribution and collection to and from

the processors.

Fig. 1 A Distributed memory implementation

VII. ANALYSIS of the RESULTS

From the Fig. 2 to Fig. 5 show that the performance of

parallel algorithm depends on the number of processors in the

cluster and on the size of the problem (matrix size in our

case). The performance measurement parameters speed up and

efficiency for parallel algorithm are shown in Fig 2 and Fig 5.

There is a considerable reduce in execution time when the

problem size is 1024 and the number of processor is eight.

Again the fig 3 and fig 4 show the better speed up when the

number of processor is eight the problem size is 1024. Fig 5

shows that the efficiency is highest when the number of

processor is two and the problem size is 512 which mean the

processor contributes its maximum effort that is up to 95%.

TABLE I
No. of Processor VS Execution Time

Fig.2 Number of Processor VS Execution Time

TABLE II

No. of Processor VS Speed UP

No. of

Processor

Speed UP

265x256 512X512 1024X1024

2 1.42 2.75 3.79

4 1.87 3.11 5.15

8 1.89 3.58 6.40

No of

Processor(p)

 Matrix Order

256X256 512X512 1024X1024

 Execution Time

1 9.865 74.324 593.637

2 6.904 39.645 314.909

4 3.585 23.873 165.942

8 2.604 14.434 92.739

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 23

Fig.3 No. of Processor VS Speed UP

TABLE III

Matrix order VS No. of Processor

Fig. 4 Matrix order VS No. of Processor

TABLE I V

No. of Processor VS Efficiency

 Fig. 5 No. of Processor VS Efficiency

VII. CONCLUSION

This paper has presented parallel implementations of matrix

multiplication using distributed-memory approaches. Matrix

multiplication is an efficient algorithm for the measure of the

parallel processing parameters as the execution time speed-

up/efficiency as shown by the figures. The results of the

computation show the considerable improvement over the

execution time when the problem size is 1024 and the number

of processor is eight. So we can apply PVM for solving even

larger problem faster. The result shows a better improvement

on the performance when the program is executed in parallel.

REFERENCES

1. Geist G. A., Kohl J. A., and Papadopoulos P. M., "PVM

and MPI: A Comparison of Features”, May 30, 1996.

2. Gupta A. and Kumar V.”Scalability of Parallel

Algorithms for Matrix Multiplication*”. TR 91-54,

November, 1991.

3. Hussain J. S. And Ahmed G. “A Comparative Study and

Analysis of PVM and MPI for Parallel and Distributed

Systems”. IEEE, 2005.

4. Lee M.-C. “A Divide-and-Conquer Strategy and PVM

Computation Environment for the Matrix Multiplication”.

Springer-Verlag Berlin Heidelberg 2009.

5. Sunderam V. S. “PVM: a parallel framework for parallel

distributed computing”. 1990.

Matrix Order No. of Processor

2 4 8

256X256 1.42 2.75 3.79

512X512 1.87 3.11 5.15

1024X1024 1.89 3.58 6.40

No. of

Processor

Efficiency (%)

256X256 512X512 1024X102

4

2 71 94 95

4 68 78 90

8 47 64 80

