
© 2012, IJARCSSE All Rights Reserved Page | 293

 Volume 2, Issue 6, June 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Different Compression Techniques and Their Execution In

Database Systems To Improve Performance
Naresh Kumar, Dr. Kapil Kr. Bansal

Assistant Professor

 Department of Information Technology ,

SRM University, NCR Campus

 ABSTRACT :Compression in traditional database systems is known to improve performance significantly [1, 4], it

reduces the size of the data and improves I/O performance by reducing seek times (the data are stored nearer to each

other), reducing transfer times (there is less data to transfer), and increasing buffer hit rate (a larger fraction of the

DBMS fits in buffer pool). For queries that are I/O limited, the CPU overhead of decompression is often compensated for

by the I/O improvements. We revisit this literature on compression in the context of column-oriented database systems.

Storing data in columns presents a number of opportunities for improved performance from compression algorithms

when compared to row-oriented architectures. In a column-oriented database, compression schemes that encode multiple

values at once are natural. In a row-oriented database, such schemes do not work as well because an attribute is stored as

a part of an entire tuple, so combining the same attribute from different tuples together into one value would require some

way to “mix” tuples. Compression techniques for row-stores often employ dictionary schemes where a dictionary is used to

code wide values in the attribute domain into smaller codes. For example, a simple dictionary for a string-typed column of

colors might map “blue” to 0, “yellow” to 1, “green” to 2, and so on [1, 2]. Sometimes these schemes employ prefix-coding

based on symbol frequencies (e.g., Huffman encoding [46]) or express values as small differences from some frame of

reference and remove leading nulls from them

Key Words database ,compression,column oriented database , query execution etc.

I. INTRODUCTION

Our work also introduces a novel architecture for passing

compressed data between operators that minimizes

operator code complexity while maximizing opportunities

for direct operation on compressed data. Previous work

[40, 67, 32] also stresses the importance of insulating the

higher levels of the DBMS code from the details of the

compression technique. In general, this is accomplished

by decompressing the data before it reaches the operators

(unless dictionary compression is used and the data can be

processed directly). However, in some cases increased

performance can be obtained in query processing if

operators can operate directly on compressed data

(beyond simple dictionary schemes) and our work is the

first to propose a solution to profit from these potential

optimizations while keeping the higher levels of the

DBMS as insulated as possible.

In this paper we briefly describe the compression

schemes .For each scheme, we first give a brief

description of the traditional version of the scheme as

previously used in row store systems (and cite papers that

provide more detail when possible). We then describe

how the algorithm is used in the context of column-

oriented databases.

II. Null Suppression
There are many variations on the null compression

technique (see [4,5] for some examples), but the

fundamental idea is that consecutive zeros or blanks in the

data are deleted and replaced with a description of how

many there were and where they existed. Generally, this

technique performs well on data sets where zeros or

blanks appear frequently. We chose to implement a

column oriented version of the scheme described in [5].

Specifically, we field sizes to be variable and encode the

number of bytes needed to store each field in a field

prefix. This allows us to omit leading nulls needed to pad

the allow data to a fixed size. For example, for integer

types, rather than using the full 4 bytes to store the

integer, we encoded the exact number of bytes needed

using two bits (1, 2, 3, or 4 bytes) and placed these two

bits before the integer. To stay byte-aligned we combined

http://www.ijarcsse.com/

Volume 2, Issue 6, June 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 294

these bits with the bits for three other integers (to make a

full byte’s worth of length information) and used a

table to decode this length quickly as in [5].

III. Dictionary Encoding
Dictionary compression schemes are perhaps the most

prevalent compression schemes found in databases today.

These schemes replace frequent patterns with smaller

codes for them. One example of such a scheme is the

color-mapping given in the introduction. Other

examples can be found in [2,4].
We implemented a column-optimized version of

dictionary encoding. All of the row-oriented dictionary

schemescited above have the limitation that they can only

map attribute values from a single tuple to dictionary

entries. This is because row-stores fundamentally are

incapable of mixing attributes from more than one tuple

in a single entry if other attributes of the tuples are not

also included in the same entry (by definition of “row-

store” – this statement does not hold for PAX-like [2]

techniques that columnize blocks). Our dictionary

encoding algorithm first calculates the number of bits, X,

needed to encode a single attribute of the column (which

can be calculated directly from the number of unique

values of the attribute). It then calculateshow many of

these X-bit encoded values can fit in 1, 2, 3, or 4 bytes.

For example, if an attribute has 32 values, it canbe

encoded in 5 bits, so 1 of these values can fit in 1 byte, 3

in 2 bytes, 4 in 3 bytes, or 6 in 4 bytes. We choose oneof

these four options using the algorithm described in the

next paragraph. Suppose that the 3-value/2-byte option

was chosen. In that case, a mapping is created between

every possible set of 3 5-bit values and the original 3

values. For example, if the value 1 is encoded by the 5

bits: 00000; the value 25 is encoded by the 5 bits: 00001;

and thevalue 31 is encoded by the 5 bits 00010; then

the dictionary would have the entry (read entries

right-to-left)

X000000000100010 -> 31 25 1

where the X indicates an unused “wasted” bit. The

decoding algorithm for this example is then straight-

forward: readin 2-bytes and lookup entry in dictionary to

get 3 values back at once. Our decision to keep data byte-

aligned mightbe considered surprising in light of recent

work that has shown that bit-shifting in the processor is

relatively cheap.However our experiments show that

column stores are so I/O efficient that even a small

amount of compressionis enough to make queries on that

column become CPU-limited (Zukowski et. al observe a

similar result [3]) sothe I/O savings one obtains by not

wasting the extra space are not important. Thus, we have

found that it is worthbyte-aligning dictionary entries to

obtain even modest CPU savings.

Cache-Conscious Optimization

The decision as to whether values should be packed

into 1, 2, 3, or 4 bytes is decided by requiring the

dictionary tofit in the L2 cache. In the above example,

we fit each entry into 2 bytes and the number of

dictionary entries is 32
3
=32768. Therefore the size of the

dictionary is 393216 bytes which is less than half of the

L2 cache on our machine (1MB). Note that for cache

sizes on current architectures, the 1 or 2 byte options

will be used exclusively.

Parsing Into Single Values
Another convenient feature of this scheme is that it

degrades gracefully into a single-entry per attribute

scheme which is useful for operating directly on

compressed data. For example, instead of decoding a 16-

bit entry in the above example into the 3 original values,

one could instead apply 3 masks (and corresponding bit-

shifts) to get the three single attribute dictionary

values. For example:

(X000000000100010 & 0000000000011111)

>> 0 = 00010

(X000000000100010 & 0000001111100000)

>> 5 = 00001

(X000000000100010 & 0111110000000000)

>> 10 = 00000

These dictionary values in many cases can be operated on

directly and lazily decompressed at the top of the

query-plan tree.We chose not to use an order preserving

dictionary encoding scheme such as ALM or ZIL since

these schemes typically have variable-length dictionary

entries and we prefer the performance advantages of

having fixed length dictionary entries.

IV. Run-length Encoding
Run-length encoding compresses runs of the same value

in a column to a compact singular representation. Thus, it

is well-suited for columns that are sorted or that have

reasonable-sized runs of the same value. These runs are

replaced with triples: (value, start position, run

length) where each element of the triple is given a

fixed number of bits. When used in row-oriented

systems, RLE is only used for large string attributes that

have many blanks or repeated characters. But RLE can

be much more widely used in column-oriented systems

where attributes are stored consecutively and runs of the

same value are common (especially in columns that have

few distinct values). As described in , the C-Store

architecture results in a high percentage of columns being

sorted (or secondarily sorted) and thus provides many

opportunities for RLE-type encoding.

Volume 2, Issue 6, June 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 295

V. Bit-Vector Encoding

Bit-vector encoding is most useful when columns have a
limited number of possible data values (such as states in
the US, or flag columns). In this type of encoding, a bit-
string is associated with each value with a ’1’ in the

corresponding position if that value appeared at that

position and a ’0’ otherwise. For example, the

following data:

1 1 3 2 2 3 1

would be represented as three bit-strings:

bit-string for value 1: 1100001

bit-string for value 2: 0001100

bit-string for value 3: 0010010

Since an extended version of this scheme can be used to

index row-stores (so-called bit-map indices [5]), there

has been much work on further compressing these bit-

maps and the implications of this further compression on

Properties Iterator
Access

Block
Information

Is One Value() getNext() getSize()

isValueSorted() As Array() getStartValue()

isPost Config() getEndPosition()

Table : Compressed Block API

query performance [2,4,5]; however, the most recent

work in this area indicates thatone needs the bit-maps

to be fairly sparse (on the order of 1 bit in 1000) in order

for query performance to not behindered by this further

compression, and since we only use this scheme when the

column cardinality is low, our bit-maps are relatively

dense and we choose not to perform further

compression.

VI. Heavyweight Compression

Schemes
Lempel-Ziv Encoding. Lempel-Ziv ([2,3]) compression

is the most widely used technique for lossless file

compression. This is the algorithm upon which the UNIX

command gzip is based. Lempel-Ziv takes variable sized

patterns and replaces them with fixed length codes. This is

in contrast to Huffman encoding which produces variable

sized codes. Lempel-Ziv encoding does not require

knowledge about pattern frequencies in advance; it builds

the pattern table dynamically as it encodes the data. The

basic idea is to parse the input sequence into non-

overlapping blocks of different lengths while constructing

a dictionary of blocks seen thus far. Subsequent

appearances of these blocks are replaced by a pointer to

an earlier occurrence of the same block. We refer the

reader to [3,4] for more details.For our experiments, we

used a freely available version of the Lempel-Ziv

algorithm [3] that is optimized for decompression

performance (we found it to be much faster than

UNIX gzip).

We experimented with several other heavyweight

compression schemes, including Huffman and Arithmetic

encoding, but found that their decompression costs were

prohibitively expensive for use inside of a database

system.

VII. EXPERMENTED RESULTS
In this experiment, we ran a simple aggregation on a

single column of data encoded with each of the six

encoding schemes described earlier. We ran on generated

data and required that the column be decompressed as it

was brought off disk. The query that we ran was

simply:

SELECT SUM(C)

FROM TABLE

GROUP BY C

The column that we are aggregating has 100 million 32-

bit integer values. Since most columns in C-Store

projections have some kind of order , we assume sorted

runs of size X (we vary X). For example, if column C is

tertiarily sorted and the first column in the projection has

500 unique values and the second column in the

projection has 1000 unique values then C will have

average sorted runs of size 100000000/(500*1000)=200.

If C itself has 10

unique values, then within each of these sorted runs, each

value would appear 20 times. Since bit-vector

compression is only designed to be able to run on

columns with few distinct values, in our first set of

experiments, we allowed the number of distinct values in

C to vary between 2 and 40 (so that we could directly

compare all the introduced compression techniques).

Also, in most data-warehousing environments, there are a

large number of columns with few distinct values; for

example, in the TPC-H lineitem fact table, 25% of the

columns have fewer than 50 distinct values. We

experiment with columns with a higher number of

distinct values in .
We experimented with four sorted run lengths in C:

50, 100, 500, and 1000. We compressed the data in each

of the following six ways: Null suppression, Lempel-Ziv,

RLE, bit-vector, dictionary, and no compression. The

sizes of the compressed columns can be shown in Figures

Volume 2, Issue 6, June 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 296

for different cardinalities of C (here, we use cardinality to

mean the number of distinct values). We omit the plots

for the 100 and 500 sorted runs cases as they follow the

trends observed in. In these experiments, dictionary and

LZ compression consistently get the highest compression

ratios. Dictionary does a slightly better job compressing

the data than the heavy-weight LZ scheme at low column

cardinalities since our implementation of LZ will

occasionally leave some empty space at the

end of a page if it gets compressed more than

surrounding pages

VIII. CONCLUSIONS

In summary, this paper shows that significant database

performance gains can be had by implementing light-

weight compression schemes and operators that work

directly on compressed data. By classifying compression

schemes according to a set of basic properties, we were

able to extend C-Store to perform this direct operation

without requiring new operator code for each

compression scheme. Furthermore, our focus on column-

oriented compression allowed us to demonstrate that the

performance benefits of operating directly on compressed

data in column-oriented schemes is much greater

than the benefit in operating directly on row-oriented

schemes.

Hence, we see this work as an important step in

understanding the substantial performance

benefits of columnoriented database designs.

Although this paper focused on fairly simple

queries so as to carefully distill the performance

characteristics of column-oriented compression.

REFERENCES:

1. D. Huffman. A method for the construction of

minimum-redundancy codes. Proc. IRE, 40(9):1098-1101,

September 1952.

2 Balakrishna R. Iyer and David Wilhite. Data

compression support in databases. In VLDB ’94, pages

695–704, 1994.

3 Theodore Johnson. Performance measurements

of compressed bitmap indices. In VLDB, pages 278–289,

1999.

4 Setrag Khoshafian, George Copeland, Thomas

Jagodis, Haran Boral, and Patrick Valduriez. A query

processing strategy for the decomposed storage

model. In ICDE, pages 636–643, 1987.

5 Roger MacNicol and Blaine French. Sybase IQ

multiplex - designed for analytics. In VLDB, pp. 1227-

1230, 2004.

6 A. Moffat and J. Zobel. Compression

and fast indexing for multi-gigabyte text

databases. Australian

