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 ABSTRACT :Compression in traditional database systems is known to improve performance  significantly [1, 4], it 

reduces the size of the data and improves I/O performance by reducing seek times (the data are stored nearer to each 

other), reducing transfer times (there is less data to transfer), and increasing buffer hit rate (a larger fraction of the 

DBMS fits in buffer pool). For queries that are I/O limited, the CPU overhead of decompression is often compensated for 

by the I/O improvements. We revisit this literature on compression in the  context of column-oriented database systems. 

Storing data in columns presents a number of opportunities for improved performance from compression algorithms 

when compared to row-oriented architectures. In a column-oriented database, compression schemes that encode multiple 

values at once are natural. In a row-oriented database, such schemes do not work as well because an attribute is stored as 

a part of an entire tuple, so combining the same attribute from different tuples together into one value would require some 

way to “mix” tuples. Compression techniques for row-stores often employ dictionary schemes where a dictionary is used to 

code wide values in the attribute domain into smaller codes. For example, a simple dictionary for a string-typed column of 

colors might map “blue” to 0, “yellow” to 1, “green” to 2, and so on [1, 2]. Sometimes these schemes employ prefix-coding 

based on symbol frequencies (e.g., Huffman encoding [46]) or express values as small differences from some frame of 

reference and remove leading nulls from them  
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I. INTRODUCTION 

Our work also introduces a novel architecture for passing 

compressed data between operators that minimizes 

operator code complexity while maximizing opportunities 

for direct operation on compressed data. Previous work 

[40, 67, 32] also stresses the importance of insulating the 

higher levels of the DBMS code from the details of the 

compression technique. In general, this is accomplished 

by decompressing the data before it reaches the operators 

(unless dictionary compression is used and the data can be 

processed directly). However, in some cases increased 

performance can be obtained in query processing if 

operators can operate directly on compressed data 

(beyond simple dictionary schemes) and our work is the 

first to propose a solution to profit from these potential 

optimizations while keeping the higher levels of the 

DBMS as insulated as possible. 

In this paper we briefly describe the compression 

schemes .For each scheme, we first give a brief 

description of the traditional version of the scheme as 

previously used in row store systems (and cite papers that 

provide more detail when possible). We then describe 

how the algorithm is used in the context of column-

oriented databases. 
 

II. Null Suppression 
There are many variations on the null compression 

technique (see [4,5] for some examples), but the 

fundamental idea is that consecutive zeros or blanks in the 

data are deleted and replaced with a description of how 

many there were and where they existed. Generally, this 

technique performs well on data sets where zeros or 

blanks appear frequently. We chose to implement a 

column oriented version of the scheme described in [5]. 

Specifically, we field sizes to be variable and encode the 

number of bytes needed to store each field in a field 

prefix. This allows us to omit leading nulls needed to pad 

the allow data to a fixed size. For example, for integer 

types, rather than using the full 4 bytes to store the 

integer, we encoded the exact number of bytes needed 

using two bits (1, 2, 3, or 4 bytes) and placed these two 

bits before the integer. To stay byte-aligned we combined 

http://www.ijarcsse.com/


Volume 2, Issue 6, June 2012                                                                                                                          www.ijarcsse.com 

© 2012, IJARCSSE All Rights Reserved                                                                                                                 Page | 294 

 

these bits with the bits for three other integers (to make a 

full byte’s worth of length information) and used a 

table to decode this length quickly as in [5]. 

 

III. Dictionary Encoding 
Dictionary compression schemes are perhaps the most 

prevalent compression schemes found in databases today. 

These schemes replace frequent patterns with smaller 

codes for them. One example of such a scheme is the 

color-mapping given in the introduction. Other 

examples can be found in [2,4]. 
We implemented a column-optimized version of 

dictionary encoding. All of the row-oriented dictionary 

schemescited above have the limitation that they can only 

map attribute values from a single tuple to dictionary 

entries. This is because row-stores fundamentally are 

incapable of mixing attributes from more than one tuple 

in a single entry if other attributes of the tuples are not 

also included in the same entry (by definition of “row-

store” – this statement does not hold for PAX-like [2] 

techniques that columnize blocks). Our dictionary 

encoding algorithm first calculates the number of bits, X, 

needed to encode a single attribute of the column (which 

can be calculated directly from the number of unique 

values of the attribute). It then calculateshow many of 

these X-bit encoded values can fit in 1, 2, 3, or 4 bytes. 

For example, if an attribute has 32 values, it canbe 

encoded in 5 bits, so 1 of these values can fit in 1 byte, 3 

in 2 bytes, 4 in 3 bytes, or 6 in 4 bytes. We choose oneof 

these four options using the algorithm described in the 

next paragraph. Suppose that the 3-value/2-byte option 

was chosen. In that case, a mapping is created between 

every possible set of 3 5-bit values and the original 3 

values. For example, if the value 1 is encoded by the 5 

bits: 00000; the value 25 is encoded by the 5 bits: 00001; 

and thevalue 31 is encoded by the 5 bits 00010; then 

the dictionary would have the entry (read entries 

right-to-left) 
 

X000000000100010 -> 31 25 1 
 

where the X indicates an unused “wasted” bit. The 

decoding algorithm for this example is then straight-

forward: readin 2-bytes and lookup entry in dictionary to 

get 3 values back at once. Our decision to keep data byte-

aligned mightbe considered surprising in light of recent 

work that has shown that bit-shifting in the processor is 

relatively cheap.However our experiments show that 

column stores are so I/O efficient that even a small 

amount of compressionis enough to make queries on that 

column become CPU-limited (Zukowski et. al observe a 

similar result [3]) sothe I/O savings one obtains by not 

wasting the extra space are not important. Thus, we have 

found that it is worthbyte-aligning dictionary entries to 

obtain even modest CPU savings. 

 

Cache-Conscious Optimization 

The decision as to whether values should be packed 

into 1, 2, 3, or 4 bytes is decided by requiring the 

dictionary tofit in the L2 cache. In the above example, 

we fit each entry into 2 bytes and the number of 

dictionary entries is 32
3
=32768. Therefore the size of the 

dictionary is 393216 bytes which is less than half of the 

L2 cache on our machine (1MB). Note that for cache 

sizes on current architectures, the 1 or 2 byte options 

will be used exclusively. 
 

Parsing Into Single Values 
Another convenient feature of this scheme is that it 

degrades gracefully into a single-entry per attribute 

scheme which is useful for operating directly on 

compressed data. For example, instead of decoding a 16-

bit entry in the above example into the 3 original values, 

one could instead apply 3 masks (and corresponding bit-

shifts) to get the three single attribute dictionary 

values. For example: 
 

(X000000000100010 & 0000000000011111) 

>> 0 = 00010 

(X000000000100010 & 0000001111100000) 

>> 5 = 00001 

(X000000000100010 & 0111110000000000) 

>> 10 = 00000 
 

 

 

These dictionary values in many cases can be operated on 

directly  and lazily decompressed at the top of the 

query-plan tree.We chose not to use an order preserving 

dictionary encoding scheme such as ALM  or ZIL  since 

these schemes typically have variable-length dictionary 

entries and we prefer the performance advantages of 

having fixed length dictionary entries. 
 

IV. Run-length Encoding 
Run-length encoding compresses runs of the same value 

in a column to a compact singular representation. Thus, it 

is well-suited for columns that are sorted or that have 

reasonable-sized runs of the same value. These runs are 

replaced with triples: (value, start position, run 

length) where each element of the triple is given a 

fixed number of bits. When used in row-oriented 

systems, RLE is only used for large string attributes that 

have many blanks or  repeated characters. But RLE can 

be much more widely used in column-oriented systems 

where attributes are stored consecutively and runs of the 

same value are common (especially in columns that have 

few distinct values). As described in , the C-Store 

architecture results in a high percentage of columns being 

sorted (or secondarily sorted) and thus provides many 

opportunities for RLE-type encoding. 
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V. Bit-Vector Encoding 

Bit-vector encoding is most useful when columns have a 
limited number of possible data values (such as states in 
the US, or flag columns). In this type of encoding, a bit-
string is associated with each value with a ’1’ in the 

corresponding position if that value appeared at that 

position and a ’0’ otherwise. For example, the 

following data: 
 

1 1 3 2 2 3 1 
 

would be represented as three bit-strings: 

bit-string for value 1: 1100001   

bit-string for value 2: 0001100 

bit-string for value 3: 0010010 
 

Since an extended version of this scheme can be used to 

index row-stores (so-called bit-map indices [5]), there 

has been much work on further compressing these bit-

maps and the implications of this further compression on 
 

 

Properties Iterator 
Access 

Block 
Information 

Is One Value() getNext() getSize() 

isValueSorted() As Array() getStartValue() 
 

isPost Config()  getEndPosition() 

Table :        Compressed Block API 

 

query performance [2,4,5]; however, the most recent 

work in this area  indicates thatone needs the bit-maps 

to be fairly sparse (on the order of 1 bit in 1000) in order 

for query performance to not behindered by this further   

compression, and since we only use this scheme when the 

column cardinality is low, our bit-maps are relatively 

dense and we choose not to perform further 

compression. 

 

VI. Heavyweight Compression 

Schemes 
Lempel-Ziv Encoding. Lempel-Ziv ([2,3]) compression 

is the most widely used technique for lossless file 

compression. This is the algorithm upon which the UNIX 

command gzip is based. Lempel-Ziv takes variable sized 

patterns and replaces them with fixed length codes. This is 

in contrast to Huffman encoding which produces variable 

sized codes. Lempel-Ziv encoding does not require 

knowledge about pattern frequencies in advance; it builds 

the pattern table dynamically as it encodes the data. The 

basic idea is to parse the input sequence into non-

overlapping blocks of different lengths while constructing 

a dictionary of blocks seen thus far. Subsequent 

appearances of these blocks are replaced by a pointer to 

an earlier occurrence of the same block. We refer the 

reader to [3,4] for more details.For our experiments, we 

used a freely available version of the Lempel-Ziv 

algorithm [3] that is optimized for decompression 

performance (we found it to be much faster than 

UNIX gzip). 

We experimented with several other heavyweight 

compression schemes, including Huffman and Arithmetic 

encoding, but found that their decompression costs were 

prohibitively expensive for use inside of a database 

system. 

 

VII. EXPERMENTED RESULTS 
In this experiment, we ran a simple aggregation on a 

single column of data encoded with each of the six 

encoding schemes described earlier. We ran on generated 

data and required that the column be decompressed as it 

was brought off disk. The query that we ran was 

simply: 
 

SELECT SUM(C) 

FROM TABLE 

GROUP BY C 

The column that we are aggregating has 100 million 32-

bit integer values. Since most columns in C-Store 

projections have some kind of order , we assume sorted 

runs of size X (we vary X). For example, if column C is 

tertiarily sorted and the first column in the projection has 

500 unique values and the second column in the 

projection has 1000 unique values then C will have 

average sorted runs of size 100000000/(500*1000)=200. 

If C itself has 10 

unique values, then within each of these sorted runs, each 

value would appear 20 times. Since bit-vector 

compression is only designed to be able to run on 

columns with few distinct values, in our first set of 

experiments, we allowed the number of distinct values in 

C to vary between 2 and 40 (so that we could directly 

compare all the introduced compression techniques). 

Also, in most data-warehousing environments, there are a 

large number of columns with few distinct values; for 

example, in the TPC-H lineitem fact table, 25% of the 

columns have fewer than 50 distinct values. We 

experiment with columns with a higher number of 

distinct values in . 
We experimented with four sorted run lengths in C: 

50, 100, 500, and 1000. We compressed the data in each 

of the following six ways: Null suppression, Lempel-Ziv, 

RLE, bit-vector, dictionary, and no compression. The 

sizes of the compressed columns can be shown in Figures  
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for different cardinalities of C (here, we use cardinality to 

mean the number of distinct values). We omit the plots 

for the 100 and 500 sorted runs cases as they follow the 

trends observed in. In these experiments, dictionary and 

LZ  compression consistently get the highest compression 

ratios. Dictionary does a slightly better job compressing 

the data than the heavy-weight LZ scheme at low column 

cardinalities since our implementation of LZ will 

occasionally leave some empty space at the 

end of a page if it gets compressed more than 

surrounding pages 

 
VIII. CONCLUSIONS 

In summary, this paper  shows that significant database 

performance gains can be had by implementing light-

weight compression schemes and operators that work 

directly on compressed data. By classifying compression 

schemes according to a set of basic properties, we were 

able to extend C-Store to perform this direct operation 

without requiring new operator code for each 

compression scheme. Furthermore, our focus on column-

oriented compression allowed us to demonstrate that the 

performance benefits of operating directly on compressed 

data in column-oriented schemes is much greater 

than the benefit in operating directly on row-oriented 

schemes. 

Hence, we see this work as an important step in 

understanding the substantial performance 

benefits of columnoriented database designs. 

Although this paper  focused on fairly simple 

queries so as to carefully distill the performance 

characteristics of column-oriented compression. 
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