
© 2012, IJARCSSE All Rights Reserved Page | 43

 Volume 2, Issue 7, July 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

A Strategy for Initiate Support Check into Frequent

Itemset Mining
 G. Hari Prasad

1
 J.Nagamuneiah

2

 M.Tech, Dept of CSE Assoc.Professor,Dept of CSE

 CREC, Tirupati, India CREC, Tirupati, India.

Abstract— Mining Association Rules means that, given a set of sales transactions, to discover all association among items such

that the presence of some items in transaction will imply the presence of other items in the same transaction. The mining of

association rules can be mapped into the problem of discovering large item sets. Interesting patterns often occur at different

levels of support. The classic association mining based on a uniform minimum support, such as Apriori, either misses

interesting patterns of low support or suffers from the bottleneck of itemset generation caused by a low minimum support. A

better solution lies in exploiting support constraints, which specify what minimum support is required for what item sets, so

that only the necessary item sets are generated. The support constraints are “pushed” into the Apriori item set generation so

that the “best” minimum support is determined for each itemset at runtime to preserve the essence of Apriori. This strategy is

called Adaptive Apriori.

Keywords— Data Mining, association rules, domain-specific constraints, classification.

I. INTRODUCTION

 Nearly all later frequent itemset minings rely on Apriori

as a basic pruning strategy. Constraints other than the

minimum support are considered in some other research

papers. However, none of these approaches considers

pushing support constraints like in the paper. The

correlation approach considers the support requirement

relative to the independence assumption, but not general

support constraints or constraint pushing. Instead of

abandoning the support requirement, our approach is to

make the requirement more realistic by allowing it

different for different itemsets.

This specification is unnatural for three reasons.

1. The MIS of individual items has to reflect the minimum

support of unseen itemsets at the specification time.

2. In some applications, the user may have a minimum

support for an itemset as a single concept, e.g., {white,

male}, but not for individual items in the itemset (e.g.,

white or male). This ―minimum itemset support‖ is usually

lower than the minimum item support.

3. Different minimum supports cannot be specified for two

itemsets, like {white, male} and {white, male, grad} if a

common item has the lowest MIS, like white. We

overcome these difficulties by specifying the minimum

support directly for itemsets. We will show that our

specification can model the MIS specification, but the

converse is not true.

With the background information furnished above we now

proceed to the technical part of this project which begins

with the definition of the problem and in-depth analysis

which is followed by the design and implementation and

finally concluded this through testing of the coded

application.

―Market – Basket Analysis‖ is used to determine which

products sell together. It assumes, we have some large

number of items. Example: ―bread, milk‖. Customers fill

their baskets with some subset of the items and we get to

know what items

people buy together. To explore this we use ―Association

Rules Mining‖.

1.1 Association Rules:

Association rules are statements of the form

{X1,X2,…,Xn} => Y, meaning that if we find all of

X1,X2,…,Xn in the Market – Basket, then we have a good

chance of finding ‗Y‘. The probability of finding ‗Y‘ for us

to accept this rule is called the ―confidence‖ of the rule.

We normally would search only for rules that had

confidence above a certain threshold.

For example, we can find a rule like

{milk,butter} => bread

because a lot of people buy bread.

1.2 Formal Model:

Let X=I1,I2,…,Im be a set of binary attributes,

called items. Let T be a set of transactions. Each

transaction ‗t‘ is represented as a binary vector, with t[k] =

1 if ‗t‘ bought the item Ik, and t[k] = 0 otherwise. Let X be

a set of some items in X. We say that a transaction ‗t‘

satisfies X if for all items Ik in X, t[k] = 1.

By an association rule, we mean an implication of the form

 X => Ij is satisfied in the set of transactions T with the

confidence factor

 0 ≤ c ≤ 1 iff atleast c% of transactions in T that satisfy X

also satisfy Ij. We will use the notation X => Ij | c to

specify that the rule X => Ij has a confidence factor of c.

Given the set of transactions T, we are interested in

generating all rules that satisfy certain additional

constraints of two different forms.

http://www.ijarcsse.com/

Volume 2, Issue 7, July 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 44

II. Syntactic Constraints
These constraints involve restrictions on items that can

appear in a rule. For example, we may be interested only in

rules that have a specific items Ix appearing in the consequent,

or rules that have a specific item Iy appearing in the antecedent.

Combinations of the above constraints are also possible – we

may result all rules that have items from some predefined

itemset X appearing in the consequent, and items from some

other itemset Y appearing in the antecedent.

1. Support Constraints: These constraints concern the

number of transactions in T that support a rule. The

support for a rule is defined to be the fraction of

transactions in T that satisfy the union of items in the

consequent and antecedent of the rule.

2. Confidence: Confidence is a measure of the rule‘s

strength, support corresponds to statistical

significance. Besides statistical significance, another

motivation for support constraints comes from the fact

that we are usually interested only in rules with

support above some minimum threshold for business

reasons. If the support is not large enough, it means

that the rule is not worth consideration or that it is

simply less preferred.

2.1 Apriori:

 Apriori algorithm is used for mining frequent

itemsets for ―boolean association rules‖. Apriori employs

an iterative approach known as level-wise search, where k-

itemsets are used to explore (k+1) itemsets.

First, the set of frequent 1-itemset is found. This set is

denoted as L1. L1 is used to find L2, the set of frequent 2

itemsets, which is used to find L3 and so on. The finding of

each Lk requires on full scan of the database.

Drawbacks:

 Misses interesting patterns of low support

 Suffers from the bottleneck of itemset generation

caused by a low minimum support

2.3 Adaptive Apriori:

 Adaptive Apriori is used to push SCs following the

―dependency chain‖ of itemsets in the itemset generation

in Apriori. This dependency is best described by a schema

enumeration tree. In a schema enumeration tree, each node

(except the root) is labeled by a bin Bi. A node v represents

the schema given by the labels B1…Bk along the path from

the root to v. The ordering of nodes in a schema

enumeration tree is determined dynamically on a per-node

basis to achieve a certain optimality of constraint pushing.

Advantages:

Adaptive Apriori uses support constraints, which specify

what minimum support is required for what itemsets, so

that only the necessary itemsets are generated.

The support constraints are ―pushed‖ into the Apriori

itemset generation so that the ―best‖ minimum support is

determined for each itemset at runtime to preserve the

essence of Apriori.

III. Association Rules

 Data mining has recently attracted tremendous amount

of attention in data and database research because of its

applicability in many areas, including decision support,

marketing strategy and financial forecast. Our capabilities

to both generating and collecting data have been increasing

rapidly. The wide spread use of bar codes for most

commercial products, the computerization of many

business and government transaction and the advances in

data collection tools have provided us with huge amounts

of data. This explosive growth in data and databases has

generated an urgent need for new techniques and tools that

can intelligently and automatically transform the processed

data into useful information and knowledge. Consequently,

data mining has become a research are with increasing

importance.

One of the most important data-mining problems is mining

association rules.

Association rule mining finds interesting

associations and/or correlation relationships among large

set of data items. Association rules show attribute value

conditions that occur frequently together in a given dataset.

A typical and widely-used example of association rule

mining is Market Basket Analysis.

For example, data are collected using bar-code

scanners in supermarkets. Such ‗market basket‘ databases

consist of a large number of transaction records. Each

record lists all items bought by a customer on a single

purchase transaction. Managers would be interested to

know if certain groups of items are consistently purchased

together. They could use this data for adjusting store

layouts (placing items optimally with respect to each

other), for cross-selling, for promotions, for catalog design

and to identify customer segments based on buying

patterns.

Association rules provide information of this type in the

form of "if-then" statements. These rules are computed

from the data and, unlike the if-then rules of logic,

association rules are probabilistic in nature.

One of the tasks is to derive a set of strong association

rules in the form

 ― A1Λ…..ΛAm => B1Λ…..ΛBn ―

Where Ai (for i ε {1,….,m}) and Bj (for j ε {1,….,n}) are

sets of attributes values, from the relevant data sets.

Frequent Itemsets:

 In many situations, we only care about association

rules involving sets of items that appear frequently in

baskets. For example, we can run a good marketing

strategy involving items that no one buys anyways. Thus,

much data mining starts with the assumption that we only

care about sets of items with high ―support‖ that is., they

appear together in many baskets. We then find association

only involving a high-support set of items (i.e.

{ X1,X2,…,Xn,Y}) must appear in at least a certain percent

of baskets, called the support threshold.

Frequent Itemset Mining:

 We consider the term ―frequent itemset‖ for ―a set

‗S‘ that appears in at least fraction ‗S‘ of the baskets‖,

where ‗S‘ is some chosen constant, typically 0.01 or 1%.

We assume data is too large to fit in main

memory. It is either stored RDB, say as a relation baskets

(BID, item) or as a flat file of records of the form (BID,

item1,…, itemn).

Volume 2, Issue 7, July 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 45

If a set of items ‗S‘ is frequent (i.e. appears in at least

fraction ‗S‘ of the baskets), then every subset of ‗S‘ is also

frequent.

To find frequent itemsets, we can:

 Proceed level wise, finding first the frequent itemsets

(sets of size 1), then the frequent pairs, the frequent

triples, etc.

 Find all maximal frequent itemsets (i.e. set ‗S‘ such

that no proper

super set of ‗S‘ is frequent) in one pass or few passes.

The main problem with association rule mining is finding

frequent itemsets and their support.

3.1 Rule generation

 Most data mining tools generate their findings in

the format of ―if … then‖ rules. Here‘s an example of a

data mining process that discovers buying patterns of

customers.

Eg:

If buys (CPU, monitor)

Then

Buys (speakers)

3.2 Basic association rule algorithm

 In the first pass, the support of each individual

item is counted, and the large ones are determined.

 In each subsequent pass, the large itemsets

determined in the previous pass is used to generate

new itemsets called candidate itemsets.

 The support of each candidate itemset is counted,

and the large ones are determined.

 From the large itemsets found, frame the

Association Rules present.

3.3 Apriori:

 Apriori algorithm is used for mining frequent itemsets

for ―boolean association rules‖. Apriori employs an

iterative approach known as level-wise search, where k-

itemsets are used to explore (k+1) itemsets.

First, the set of frequent 1-itemset is found. This set is

denoted as L1. L1 is used to find L2, the set of frequent 2

itemsets, which is used to find L3 and so on. The finding of

each Lk requires on full scan of the database.

To improve the efficiency of the level-wise generation of

frequent itemsets, we use Apriori property, which is used

to reduce the search space.

In order to use the Apriori property, all non-

empty subsets of a frequent itemset must also be frequent.

By definition, if an itemset ‗I‘ doesnot satisfy the

minimum support threshold, min_sup, then ‗I‘ is not

frequent, that is, P(I) < min_sup. If an item ‗A‘ is added to

the itemset ‗I‘, then the resulting itemset (i.e.I U A) cannot

occur more frequently than ‗I‘. Therefore, I U A is not

frequent either, i.e. P(I U A) < min_sup.

―How is the Apriori property used in the algorithm?‖

A two step process is followed, consisting of join and

prune actions.

1. Join: To find Lk, a set of candidate k-itemsets is

generated by joining Lk-1 with itself. This set of

candidates is denoted Ck. Let l1 and l2 be itemsets in Lk-1.

The notation li[j] refers to the jth item in li (eg.. l1[k-2]

refers to the second to the last item in l1). By convention,

Apriori assumes that items within a transaction or itemset

are stored in lexicographic order. The join, Lk-1 -----Lk-1, is

performed, where members of Lk-1 are joinable if their first

(k-2) items are (l1[2] = l2[2])Λ….Λ(l1[k-2] = l2[k-

2])Λ(l1[k-1] < l2[k-1]). The condition (l1[k-1] < l2[k-1])

simply ensures that no duplicates are generated. The

resulting itemset formed by joining l1 and l2 is l1[1]

l1[2]….l1[k-1] l2[k-1]).

2. Prune: Ck is super set of Lk, i.e. its members

may or may not be frequent, but all of the frequent k-

itemsets are included in Ck. a scan of the database to

determine the count of each candidate in Ck would

resulting the determination of Lk. Ck, however, can be huge,

and so this could involve heavy computation. To reduce

the size of Ck, the Apriori property is used as follows. Any

(k-1)-itemset that is not frequent cannot be a subset of a

frequent k-itemset. Hence, if any (k-1)-subset of a

candidate k-itemset is not in Lk-1, then the candidate cannot

be frequent either and so can be removed from Ck. This

subset testing can be done quickly by maintaining a hash

tree of all frequent itemsets.

Algorithm:

Apriori: Find frequent itemsets using an iterative level-

wise approach based on candidate generation.

Input: Database D, of transactions; minimum support

threshold, min_sup

Output: L, frequent itemsets in D

Method:

1. L1 = find frequent_1-itemsets(D) ;

2. for(k=2; Lk-1≠φ ;k++)

3. Ck = apriori_gen(Lk-1 , min_sup);

4. for each transaction t ε D { // scan D for

 counts

5. Ct = subset(Ck , t); // get the subsets of t

that are candidates

6. for each candidate C ε Ct

7. C.count++ ;

8. }

9. Lk = { C ε Ck | C.count ≥ min_sup }

10. }

11. return L = UkLk ;

procedure apriori_gen (Lk-1: frequent (k-1)-itemsets;

min_sup: minimum support threshold)

1. for each itemset l1 ε Lk-1

2. for each itemset l2 ε Lk-1

3. if (l1[1] = l2[1]) Λ (l1[2] = l2[2]) Λ…… Λ

(l1[k-2] = l2[k-2]) Λ (l1[k-1] < l2[k-1]) then

4. C = l1 -----l2

5. if has_infrequent_subset(C , Lk-1) then

Volume 2, Issue 7, July 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 46

6. delete C ; // prune step: remove unfruitful

candidate

7. else add C to Ck ;

8. }

9. return Ck ;

procedure has_infrequent_subset(C: candidate k-itemset;

Lk-1: frequent (k-1)-itemsets) ; // use prior knowledge

1. for each (k-1)-subset S of C

2. if S doesnot belongs Lk-1 then

3. return TRUE ;

4. return FALSE ;

We need to scan the database of transactions to compute

the support for an itemset but some itemsets can be

discarded before the scan. A candidate K-sized itemset, I1,

can be discarded before scanning the transactions if any of

its K-1 sized subsets do not appear in the list of K-1 sized

itemsets.

For example, suppose the itemsets from K = 3 are

K3 = {{a, b, d}, {a, b, f}, {a, d, f}, {b, d, f}, {a, c, d}, {c, e,

g}, {c, e, h}, {c, g, h}}

The candidate 4-sized itemset {c, e, g, h} can be discarded

because a subset, {e, g, h}, does not appear in K3. In other

words, for {c, e, g, h} to have min Support, all of its

subsets must have minSupport but the subset {e, g, h} does

not, for if it did, it would appear in K3.

Consider the generation of candidate 4-sized itemsets from

joining 3-sized itemsets. Here, we assume that the items

within an itemset are stored in lexicographic order.

Suppose we have two itemsets, the first denoted by I1 and

the second by I2. Denote the first item in I1 by I1(1) and

the second by I1(2), etc, and similarly for I2. Itemsets I1

and I2 can be joined to generate a 4-sized itemset provided.

Let us consider an example to find frequent itemsets.

Support Specification:

TID List of item_Ids

T1

T2

T3

T4

T5

T6

T7

T8

T9

I1, I2,I5

I2, I4

I2, I3

I1, I2, I4

I1, I3

I2, I3

I1, I3

I1, I2, I3, I5

I1, I2, I3

The formula to find the support of each item is

 SUPPORT (A=>B) = no of tuples containing both A &

b

 Total no of tuples

3.4 Support Constraints Specification:

It is a way to specify general constraints on minimum

support. Minimum support range is [0..1]

Support Specification:

The task of support specification is to specify the

minimum support for each itemset. Our approach is to

partition the set of items into bins, denoted as Bj, such that

items that need not be distinguished in the specification are

in the same bin. To specify the minimum support for

itemsets, we will specify the minimum support for

schemas.

Support Constraints:

A support constraint (SC) has the form SCi(l1,….,ls) ≥ θi

(or SCi ≥ θi), S ≥ 0. Each lj is either a bin or a variable for

bins. θi , called a minimum support, is a function over

l1,….,ls and returns a real in [0..1]. An SC is ground if it

contains no variable, otherwise, non-ground. A non-ground

SC can be instantiated to a ground SC by replacing each

variable with a bin. A support specification is a non-empty

set of SCs.

Frequent Itemsets:

An itemset ‗I‘ matches a ground SCi ≥ θi in the open

interpretation if ‗I‘ contains (atleast) one item from each

bin in SCi and these items are distinct. An itemset ‗I‘

matches a ground SCi ≥ θi in the closed interpretation. If

‗I‘ contains one item from each bin in SCi and these items

are distinct, and ‗I‘ contains no other items. An itemset ‗I‘

matches a non-ground SC if ‗I‘ matches some instantiation

of the SC.

Volume 2, Issue 7, July 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 47

Association Rules:

For each pair of frequent itemsets I and I′ such that I C I′

 if sup(I′) / sup(I) ≥ minconf, Type-I association

rule I → I′ - I is constructed.

 if sup(I′) / sup(I′ - I) ≥ minconf, Type-II

association rule I′ - I → I is constructed.

 if sup(I′) / sup(I′ - I) ≥ minconf, and I′ - I is

frequent, Type-III association rule I′ - I → I is

constructed.

Now let us consider an example for constructing the bins

according to the support constraints given.

Let us consider the transactions and support specification

by specifying some items in an itemset. Each item is

represented by an integer from 0 to 8.

 database

Now, let us consider four support constraints

A specification

 SC1(B1,B2)>=0.2

 SC2(B3)>=0.4

 SC3(B2)>=0.6

 SC0()>=0.8

Each bin Bi contains a disjoint set of items. We assume

that, if more than one support constraint is applicable to an

itemset, the one specifying the lowest minimum support is

adopted. This is because adding more items to an itemset

should not increase the minimum support of the itemset.

Let us consider each case

Case 1. SC1(B1,B3)>=0.2 specifies minimum support 0.2

for any itemset containing (at least) one item in each of B1

and B3.

Case 2. SC2(B3)>=0.4 specifies minimum support 0.4 for

any itemset containing one item in B3 but no item in B1

(otherwise, Case 1applies).

Case 3. SC3(B2) >=0.6 specifies minimum support 0.6 for

any itemset containing one item in B2 but no item in B3

(otherwise, Case 2 applies).

Case 4. SC0()>=0.8 specifies minimum support 0.8 for any

other itemset (i.e., the default minimum support).

According to above constraints we construct bins.

For any itemset I containing an item from B1and an item

from B3, I matches both SC1(B1,B3)>=0.2 and

SC2(B3)>=0.4, minsup(I)=0.2

Because the lowest minimum support of matched SC‘s is

used.

For example, {0,2} {0,2,3} and {2,3,4}, {2,4,7} {2,4,8}

{4,7,8} and {2,4,7,8} all have only SC3(B2) >=0.6 and are

frequent. {2,7} and {2,8} match only SC0()>=0.8 and {2,7}

is frequent but not {2,8}.

Now the bins are

B0

 B1

 B2

 B3

1,7,8

 2,6

 4,5

 0,3

3.5 Typical Scenarios Of Specification:

Support-based specification: The minimum support for

an itemset is a function of the support of some or all items

contained in the itemset. A bin Bj usually contains

similarly supported items. Such bins can be found by

computing the support of items in one pass of the

transactions and then clustering the items based on their

supports. The bin θi is usually a function of some

representative supports of bins (such as the maximum,

minimum, or average support in the bin), and the function

of θi can be either chosen from a menu of built-in functions

or supplied by the user. If the user does not have particular

schemas in mind for specification, a generic specification

in the form of a nonground SC can be used.

Concept-based specification: When an item is present, it

is desirable to specify SCs based on the generality of the

item concepts. For example, SC1(c1,c2) ≥ 2 X sup(c1) / m X

sup(c2)/ n states that any itemset containing at least one

child of c1 and one child of c2 has the minimum support 2

X sup(c1)/ m X sup(c2)/ n , where c1 and c2 are variables

representing concepts, and m and n are the number of child

concepts of c1 and c2.

Attribute-based specification: For a database in the form

of a relational table, each bin is corresponded to the set of

(attribute,value) pairs from the same attribute. For example,

if States and Gender are attributes in the table, SC1(States,

Gender) ≥ N /50 X N/2 specifies that any itemset

containing a state code and a gender has the minimum

support N /50 XN/2 , where N is the number of tuples in

the relational table, N/50 and N /2 are the average

support of state codes and the average support of gender.

Enumeration-based specification: The most flexible

specification is explicitly enumerating the items in a bin,

on the basis that they are not distinguishable with respect

to the specification. For example, SC1(B1,B2) ≥ 0.1, where

B1 = {milk, cheese} and B2 = {boots, sock}, says that any

itemset containing at least one item in B1 and one item in

B2 has minimum support 0.1. In this case, the user is

interested in only milk and cheese, rather than all footwear

products.

3.6 Adaptive Apriori:

Adaptive Apriori is used to push SCs following the

―dependency chain‖ of itemsets in the itemset generation

in Apriori. This dependency is best described by a schema

TID Items

100

200

300

400

500

0,2,7

0,4,7,8

2,4,5,7,8

1,2,4,7,8

2,4,6,7,8

Volume 2, Issue 7, July 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 48

enumeration tree. In a schema enumeration tree, each node

(except the root) is labeled by a bin Bi. A node v represents

the schema given by the labels B1…Bk along the path from

the root to v. The ordering of nodes in a schema

enumeration tree is determined dynamically on a per-node

basis to achieve a certain optimality of constraint pushing.

3.7 Pushed Minimum Support:

Consider schema s = B1…Bk-2Bk-1Bk, and its generating

schemas s1 = B1… Bk-2Bk-1 and s2=B1…Bk-2Bk. In the case

of a uniform minimum support, if an itemset

 I = {i1,…,ik-2,ik-1,ik}

of ‗s‘ is frequent, so are I1 = {i1,…,ik-2,ik-1} of s1 and I2 =

{i1,…,ik-2,ik} of s2. This property enables Apriori to

generate candidate k-itemsets I using frequent (k-1)-

itemsets I1 and I2. However, this generation is not available

for non-uniform minimum support. Our approach is to

replace minsup with a new function, Pminsup, called the

―pushed minimum support‖, such that Pminsup defines a

superset of the frequent itemsets and this superset can be

computed in the manner of Apriori.

Let Pminsup be a function from (the schemas of) schema

enumeration tree ‗T‘ to [0..1] satisfying:

 Completeness. For every schema ‗s‘ in ‗T‘ such

that minsup(s) is defined, Pminsup(s) ≤ minsup(s).

 Apriori-like. For every schema ‗s‘ and its

generating schemas s1 and s2, whenever an itemset

{i1,…,ik-2,ik-1,ik}

of ‗s‘ is frequent(Pminsup), so are {i1,…,ik-2,ik-1} of s1 and

{i1,…,ik- 2,ik} of s2.

 Maximality. Pminsup is maximal with respect to

Completeness and Apriori-like.



IV. Conclusion

In this project, we proposed a strategy for introducing

support constraints into frequent Itemset mining and a

frame work for pushing support constraints into the

Apriori itemset generation. Instead of using the lowest

minimum support specified, as in Apriori we use the best

―runtime‖ minimum support pushed for each itemset that

preserves the Apriori itemset generation. We call this

strategy Adaptive Apriori.

All the improvements of Apriori are applicable to

Adaptive Apriori. Moreover, this strategy does not rely on

a uniform support requirement.

V . Future Work

This project can be further extended by studying how the

mining framework for non-uniform minimum support can

be extended beyond the Apriori itemset generation. There

is also a scope of improvement by introducing trees for

generating the supports for bins which improves the order

sensitivity in specifying the constraints

REFERENCES

1. Agrawal, R. et al, 1993. Mining association rules

between sets of items in large databases.

Proceedings of ACM SIGMOD Conference on

Management of Data (SIGMOD '93). San Diego,

CA, pp. 207-216.

2. Agrawal, R. et al, 1994. Fast algorithms for

mining association rules in large databases.

Proceedings of the 20
th
 International Conference

on Very Large Databases (VLDB '94). Santiago

de Chile, Chile, pp. 478-499.

3. Berners-Lee, T. et al, 2001. The Semantic Web,

Scientific American, Vol. 284, No. 5, pp. 34-43.

4. Bonchi, F. et al, 2005. Pushing Tougher

Constraints in Frequent Pattern Mining.

Proceedings of the Ninth Pacific-Asia Conference

on Knowledge Discovery and Data Mining

(PAKDD'05). Hanoi, Vietnam, pp. 114-124.

5. Broekstra, J. et al, 2002. Sesame: A Generic

Architecture for Storing and Querying RDF and

RDF Schema. Proceedings of the first

International Semantic Web Conference (ISWC

2002). Sardinia, Italy, pp. 54-68.

6. Broekstra, J. and Kampman, A., 2004. SeRQL:

An RDF Query and Transformation Language.

http://www.cs.vu.nl/

jbroeks/papers/SeRQL.pdf.

7. Grahne, G. et al, 2000. Efficient mining of

constrained correlated sets. Proceedings of 16th

International Conference on Data Engineering

(ICDE’ 00). San Diego, CA, pp. 512-524.

8. Han, J. and Fu, Y., 1995. Discovery of multiple-

level association rules from large databases.

Proceedings of the 21st International Conference

on Very Large Data Bases (VLDB '95). San

Francisco, CA, pp. 420-431.

9. Han, J. et al, 2002. Mining Top-k frequent closed

patterns without minimum support. Proceedings

of 2002 IEEE

International Conference on Data Mining

(ICDM'02). Maebashi City, Japan, pp. 211-218.

10. Hou, X. et al, 2005. Application of Data Mining

in Fault Diagnosis Based on Ontology.

Proceedings of the 3rd

Conference on Information Technology and

Applications (ICITA '05). Sydney, Australia, pp.

260-263.

