Abstract: Long Term Evolution (LTE) may be introduced by 3rd Technology Partnership Task and characterizes the 4th generation associated with mobile telecommunication network. In that paper our work is exclusive in providing reveal performance study dependant on NI PXIe – 5644 SYSTEM. Our efficiency study includes TDD and FDD functioning modes with regard to uplink and downlink indication in real channel, data modulation, EVM, SEARCH ENGINE MARKETING etc. This kind of paper covers practical limitations of Error Vector Magnitude (EVM) sizes for high-coverage Noises, distortion, unwarranted signals, and phase disturbance all lower EVM, and as a consequence EVM comes with a comprehensive measure of an RFIC’s quality of usage in electronic communications.

Keywords: LTE, EVM, SEM.

I. INTRODUCTION

Long Term Evolution (LTE), commonly referred to as 4G1—or next generation wireless communications—is the new standard for nationwide public safety broadband. This standard will allow access to digital technologies and deliver expanded capabilities to public safety practitioners in the field. LTE is the avenue for bringing public safety fully into the digital age. Technology devices and applications now being released on a daily basis, rival those that could be run only on in-office servers and desktops a few short years ago. This network will foster further development of applications customized for public safety and help make first responders’ operations more effective and efficient. The LTE standard supports fast speeds and holds great promise for first responders, yet there are limitations to using the associated technology in the public safety arena. The transition to LTE will not be as simple as flipping a switch. It will involve an extensive and complex build-out as well as an implementation process that will unfold over the years to come.

It will require a great deal of coordination and adjustment among current public safety broadband users now operating across a patchwork of commercially and publicly supported networks on non-contiguous bands of spectrum. Ultimately, however, LTE and the nationwide network will help even the playing field, enabling agencies of all sizes—including those in remote rural jurisdictions without current wireless coverage—to leverage emerging broadband technology. Unlike the current wireless environment, where interoperability among public safety devices and across jurisdictions is deficient, the nationwide network built on the LTE standard will provide true nationwide interoperability. This network will foster further development of applications customized for public safety and help make first responders’ operations more effective and efficient. This Issue Brief discusses the advantages and limitations of LTE technologies for public safety and provides an overview of the current state of affairs in this crucial transition period. Although data transmissions were eventually possible over LMR systems, data speed limited use to simple text-based applications using dedicated “dumb” terminals and later, laptop PCs. Large data files, photographs, videos, and large map files could not be viewed on early mobile data computers (MDCs) because data speeds on these networks were generally limited to 19.2 Kbps or slower speeds. Early use of data over LMR was limited to computer-aided dispatch (CAD), textual incident information, responders changing their location or making status changes such as from “busy” to “available,” car-to-car messaging, text-based license plate queries, and so on. Today, speeds and data transfer capabilities we would have only expected at our desktop a few short years ago, are available to the public safety responder in the field. By examining the LTE standard and related technology, and discuss how this new technology can enhance public safety response to emergencies.

Long Term Evolution (LTE) is important because it will bring up to a 50x performance improvement and much better spectral efficiency to cellular networks. LTE is different from other technologies that call themselves 4G because it is completely integrated into the existing cellular infrastructure for 2G and 3G. This allows seamless handoff and complete connectivity between previous standards and LTE. LTE is in trials now and should see commercial deployment by 2010.

LTE-based networks have upload and download speeds unheard of in the past. LTE opens the gate for many new, exciting, and more robust public safety applications. For example: Real-time video will become more robust and widely available in the field on mobile terminals, tablet devices, and smart phones, resulting in increased situational awareness for first responders. Police officers will be able to view and exchange digital photographs (e.g., mug shots) and fingerprint technology, greatly improving on-the-spot suspect identification and resulting in savings of time and resources. Fire personnel will have digital access to “as-built” building drawings and mapping programs in real time to
improve fire ground situational awareness. Incident commanders and emergency managers will communicate through enhanced incident management software that will bridge the gap from the incident to the emergency operations center, greatly improving decision-making. It has lower data transfer and connection set-up latency it has improved support for devices that are in vehicles moving at high speeds.

A. Protocol Design

The LTE standard grew out of the Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) standards, commonly called 3G. Voice communication was primary application, with data added recently. Mobility and seamless handoff were requirements from the start, as was a requirement for central management of all nodes. LTE speeds will be equivalent to what today’s user might see at home on a fast cable modem. The LTE standard is designed to enable 150 Mbps downlink and 50 Mbps uplink over a wide area. While 150 Mbps is LTE’s theoretical top uplink speed, each user’s bandwidth will depend on how carriers deploy their network and available bandwidth. Supporting high rates while minimizing power is a key design challenge. The LTE physical layer is unique because it has asymmetrical modulation and data rates for uplink and downlink. The standard is designed for full-duplex operation, with simultaneous transmission and reception. The radio is optimized for performance on the downlink, because the transmitter at the base station has plenty of power. On the uplink, the radio is optimized more for power consumption than efficiency, because while processing power has increased, mobile device battery power has stayed essentially constant.

II. LTE ARCHITECTURE

The Fig. 1 shows a high-level view of LTE architecture. This is a snapshot of the part that most closely interacts with the UE, or mobile device. The entire architecture is much more complex; a complete diagram would show the entire Internet and other aspects of network connectivity supporting handoffs among 3G, 2G, WiMAX, and other standards. This particular device shows the eNodeB, which is another name for the base station, and the interfaces between the eNodeB and UEs. The E-UTRAN is the entire network, which is the “official” standards name for LTE.

A. How the MAC Sees the PHY

The LTE PHY is The LTE PHY is typically full duplex. LTE is designed primarily for full duplex operation in paired spectrum. To contrast, WiMAX operates in half duplex in unpaired spectrum, where information is transmitted in one direction at a time. LTE can support TDD operation in unpaired spectrum; however, it is not a primary focus of the design. The PHY operates continuously for downlink with interspersed sync, providing multiple channels simultaneously with varying modulation. The downlink channel operates as a continuous stream. Unlike IEEE® 802 family standards, there is no relation between the air interface—transmitted frames on the air—and the actual service data unit (SDU) packets that are coming from the top of the protocol stack. LTE uses the concept of a resource block, which is a block of 12 subcarriers in one slot. A transport block is a group of resource blocks with a common modulation/coding. The physical interface is a transport block, which corresponds to the data carried in a period of time of the allocation for the particular UE. Each radio subframe is 1 millisecond (ms) long; each frame is 10 milliseconds. Multiple UEs can be serviced on the downlink at any particular time in one transport block. The MAC controls what to send in a given time. The LTE standard specifies these physical channels:

Physical broadcast channel (PBCH): The coded BCH transport block is mapped to four subframes within a 40 ms interval 0 40 ms timing is blindly detected, i.e. there is no explicit signaling indicating 40 ms timing. Each subframe is assumed to be self-decodable, i.e. the BCH can be decoded from a single reception, assuming sufficiently good channel conditions. Physical control format indicator channel (PCFICH). Informs the UE about the number of OFDM symbols used for the PDCCHs. Transmitted in every subframe.

© 2016, IJARCSSE All Rights Reserved
Physical downlink control channel (PDCCH): Informs the UE about the resource allocation of PCH and DL-SCH, and Hybrid ARQ information related to DL-SCH carries the uplink scheduling grant.

Physical Hybrid ARQ Indicator Channel (PHICH): Carries Hybrid ARQ ACK/NAKs in response to uplink transmissions.

Physical downlink shared channel (PDSCH): Carries the DL-SCH and PCH.

Physical multicast channel (PMCH): Carries the MCH

Physical uplink control channel (PUCCH): Carries Hybrid ARQ ACK/NAKs in response to downlink transmission. It carries Scheduling Request (SR). It also carries CQI reports.

Physical uplink shared channel (PUSCH): Carries the UL-SCH.

Physical random access channel (PRACH): Carries the random access preamble.

III. ADVANTAGES OF LTE

Applications such as automated license plate recognition (LPR) systems and GPS-enabled navigation systems will provide real time notifications and alerts, including emerging hazards and geographically specific be-on-the-look-out (BOLO) transmissions, all contributing to improvements in officer and civilian safety. With LTE and the nationwide network, first responders will gain access to innovative tools to assist them with their critical missions. They will be in a better position to take advantage of fast changing digital technology. LTE will revolutionize the way public safety responds to emergencies. Figure 1 illustrates how data speeds are enhanced through LTE technology.

LTE has been adopted as a global standard because; it increases the capacity and speed of wireless data networks

IV. METHODOLOGY / PLANNING OF WORK

Step: 1 Start the algorithm.
Step: 2 Use Long Term Evolution (LTE)
Step: 3 Apply Power Selection & Modulation method.
Step: 4 Analysis of Quality of channels
Step: 5 Improvement done by changing parameters
Step: 6 Final Results need to be
Step: 7 Stop the algorithm.

V. RESULT ANALYSIS

The error vector magnitude or EVM is a measure used to quantify the performance of a digital radio transmitter or receiver.
A signal sent by an ideal transmitter or received by a receiver would have all constellation points precisely at the ideal locations, however various imperfections in the implementation (such as carrier leakage, low image rejection ratio, phase noise etc.) cause the actual constellation points to deviate from the ideal locations. Informally, EVM is a measure of how far the points are from the ideal locations. Noise, distortion, spurious signals, and phase noise all degrade EVM, and therefore EVM provides a comprehensive measure of the quality of the radio receiver or transmitter for use in digital communications. Transmitter EVM can be measured by specialized equipment, which demodulates the received signal in a similar way to how a real radio demodulator does it. One of the stages in a typical phase-shift keying demodulation process produces a stream of I-Q points which can be used as a reasonably reliable estimate for the ideal transmitted signal in EVM calculation.

VI. CONCLUSION AND FUTURE WORK

Excellent of services allows unique application in order to generally fulfill different need. To determine the efficiency of LTE unique parameters engaged on package are EVM, modulation strategies, ACP, channel power high to high ratio etc. and LTE technique modulation plans QPSK, 07 PSK, BPSK etc. attributable to the simulation often aren't similar to the partial implementation. By appraise the performance of practical implementation using unique quality of service instruction and appraise the performance of LTE technique using modulation plan BPSK, QPSK, 16PSK etc. In
preceding research your bandwidth of new crossbreed frequency is superior to SFR. There must raise your bandwidth in order that there have to be lesser supply loss. [6] By appraise the performance of downlink relating to bandwidth and also data fee. The analysis of performance with the LTE with WIMAX is completed on your PXIE package. As the foundation are common plus economical, it'll soon be necessary for practical implementation. Various parameters has demonstrated the effectiveness of the LTE systems. In foreseeable future we can consider some more modulations techniques so as to evaluate the effectiveness of the offered technique additional. Also limited variety of quality parameters are thought therefore in not too distant future some a lot more quality parameters will likely be considered with regard to better assessment.

REFERENCES


