A Review on Content Based Image Retrieval Using Feature Extraction

Devbrat Arya, Jaimala Jha (Asst. Prof)
Department of CSE & MITS College, Gwalior
Department of CSE/IT & MITS College,
Gwalior, Madhya Pradesh, India

Abstract—Content based image retrieval (CBIR) is prominent technique for discovery various images from a large amount of image database. So image search and retrieval from large image data set is difficult task. In past few year CBIR is gaining more attention of researcher. CBIR uses the image visual contents for example color, shape and texture to index and represent image. So the research focus has shifted from algorithms of low-level feature extraction to high level visual feature extraction mechanism. For better CBIR system, necessary to improve various retrieval process such as Feature extraction, similarity matching method and soon. In this paper, detailed on CBIR with feature extraction method and compared with performance parameter their advantages and disadvantages.

Keywords—CBIR, Color, Texture, Shape, Feature Extraction.

1. INTRODUCTION

Image processing (IM) is the technique for enhancing the pictorial data for human understanding and changing the way of a image into additional appropriate way for autonomous machine observation [1]. The benefit of IM machines over people is that protection just about the whole electromagnetic range, reaching from gamma to waves of radio where as person eye is restricted to electromagnetic spectrum visual band. They can work on images produced by sources such as electron microscopy, ultrasound, and PC created images. In this way IM has a gigantic scope of uses and practically every territory of science and innovation, for example, medicine, space program, farming, industry and law implementation make utilization of space program. One of the key subjects with any sort of picture handling is picture recovery which is the need to separate useful data from the raw data, for example, perceiving the vicinity of particular color or surfaces before any sort of thinking about contents image’s is conceivable. Image recovery has been an exceptionally dynamic research region since 1970s, with push of two noteworthy exploration groups: management of database and PC vision [2].

In this way, image retrieval can be characterized as the assignment of looking for images in an image database. CBIR systems look collection of images [3] in view of features that can be separated from files of image themselves without distinct. The target of CBIR systems is to backing image retrieval in light of substance e.g., figure, color, texture. In past decades numerous CBIR systems have been produced, the shared belief for them is to extricate a coveted image. Contrasting two images and choosing in the event that they are comparative or not is a moderately simple thing to accomplish for a human. Getting a PC to do likewise successfully is however an alternate matter. The algorithms utilized as a part of these methods are regularly isolated into three errands: extraction, classification and selection. The extraction mission is to changes over well off substance of images into different substance features. Extraction of feature is the methodology of creating elements to be utilized as a part of the selection task. Those types which are prone to help in inclination are chosen and utilized as a part of the classification task. Features which are not chosen are discarded. Of these three actions, extraction of feature is most basic on the critical that the specific features made accessible for separation specifically impact the adequacy of classification task.

![Image Retrieval Categories](image.png)

Figure 1. Image retrieval categories.
The final consequence of the extraction assignment is an arrangement of components, regularly called feature vector, which constitutes image representation. In the most recent couple of decades, various above uncovered systems of picture substance highlight extraction affirmed sufficiently solid for practical uses in industrial automation, social security, biomedicine, crime prevention and biometric authentication.

II. FEATURE EXTRACTION

In extensive sense, features may visual based and text based. Textual features are annotations, tags, keywords etc. features of the visual image are texture, shape, color etc. The visual features are further categorized as common features and domain particular features. Common features are shape, texture, color and domain particular features are application dependent for e.g. finger prints and human faces. Domain particular features are related to recognition of pattern. A characteristic is defined as an fascinating a part of an image and elements are used as a beginning point for a lot of computer imaginative and prescient algorithms. Considering the fact that elements are used as the beginning factor and common primitives for subsequent algorithms, the total algorithm will typically handiest be as good as its characteristic detector.

A. Color:
Color defines one of the features of significant visual in CBIR. There are various examples, where features of color in image retrieving are used for example block-based, histograms, moments. Color histogram is used for measures computing distance based on the similarity of color for all image. A color histogram is used to define the distribution of global color in an image and is extra frequently used technique because of its benefits like high efficiency. Other representation of feature for example color sets and color moments are also used than histogram of color. The color is extensively used significant feature for representation of image. This is most significant as it is invariant with respect to image scaling, translation and rotation [4]. Color space, color quantification and similarity measurement are the color feature extraction key components. Color feature is not dependent upon image size. The models of color can be categorized as models of User & Hardware based; for example HSV and RGB. Numerous spaces of color are there which offers various applications.

B. Texture:
Texture includes significant knowledge about structural surfaces arrangement and their relationship to the surrounding atmosphere. It is an inherent property of effectively reach surfaces concluding hair, trees, bricks, clouds, and fabric. Texture gives valuable surfaces data about their relationship and structures with surrounding. Analysis and texture can be studied at three different levels i.e. on statistical level, statistics extracted set from the image is known as texture. On the level of structural, the image primitives and their rules of placement are well-known as its texture. On the level of spectral, texture is describes as coefficients set in transform domain. With various level use the textures can be recognized but textures may not agree with human evaluating the textures way [5]. These reasons are human perception and semantic gap subjectivity. Texture feature defines spectral features which are taken applying statistical features, wavelet transform, tamura texture features etc. Tamura explored the representation of texture from a various viewpoint [6]. Color and texture queries can be formulated in similar way, through selecting preferred textures or through providing an query image.

C. Shape:
Shape does not refer to the image shape but to the specific region shape that is being sought out. In the image retrieval, and on applications depending, fewned the representation of shape to be invariant to translation, scaling and rotation, while others do not. Objects or regions shape features have been used in numerous systems of CBIR.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Techniques</th>
<th>Accuracy</th>
<th>Dimension</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Color Moment</td>
<td>Low</td>
<td>Low</td>
<td>Lower computational complexity</td>
<td>Precision is low</td>
</tr>
<tr>
<td>Color</td>
<td>HSV histogram</td>
<td>High</td>
<td>Medium</td>
<td>Simple, Fast computation</td>
<td>No spatial information</td>
</tr>
<tr>
<td>Color</td>
<td>Correlogram</td>
<td>High</td>
<td>High</td>
<td>Contains spatial correlation of colors, Simple to compute</td>
<td>Very slow computation</td>
</tr>
<tr>
<td>Texture</td>
<td>Gabor Filter</td>
<td>High</td>
<td>High</td>
<td>Achieves highest retrieval results</td>
<td>Computationally intensive</td>
</tr>
<tr>
<td>Texture</td>
<td>Gabor Moment</td>
<td>Low</td>
<td>Low</td>
<td>Lower Dimensionality</td>
<td>Low retrieval result compare to Gabor filter</td>
</tr>
</tbody>
</table>

Table I Comparison of the various techniques [9]
III. ARCHITECTURE OF CBIR SYSTEM

Content-based retrieval utilizes the substance of images to speak to and access the images from the large database.

![General Architecture of CBIR](image)

The general architecture of CBIR system is for the given image database, elements are extricated first from individual images. The features can be visual elements like color, texture, shape, locale or spatial elements or some compacted domain features. The separated elements are depicted by highlight vectors. These element vectors are then put away to shape image feature database. For a given query image, we comparably remove its elements and structure a feature vector. This feature vector is coordinated with the already stored vectors in image feature database.

IV. APPLICATIONS OF RETRIEVAL SYSTEM

The benefits of such structures range from simple users searching a specific image on web. Numerous professionals kinds like police force for recognition of image in crime prevention.

- Medicine diagnosis
- Engineering and architectural design
- Publishing and Fashion
- Remote sensing systems and Geographical information
- Home entertainment etc.

V. METHODS COMPARISON

<table>
<thead>
<tr>
<th>Paper name</th>
<th>Feature extraction method</th>
<th>Performance evaluation parameter</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color & Texture Feature of CBIR [17]</td>
<td>Color Histogram Standard Wavelet</td>
<td>Retrieval Accuracy</td>
<td>Improve the retrieval accuracy</td>
<td>Insufficient Feature Set</td>
</tr>
<tr>
<td>CBIR using colour, texture & Shape feature [18]</td>
<td>Colour moment, Gabor filter, GVF</td>
<td>Retrieval Accuracy</td>
<td>Create robust feature set</td>
<td>High Semantic gap</td>
</tr>
<tr>
<td>CBIR using Feature Combination & RF [19]</td>
<td>Colour moment, Gabor wavelet co-occurrence matrix filter,</td>
<td>Precision</td>
<td>Minimize the semantic gap applying RF with SVM</td>
<td>It is the time consuming to label negative examples</td>
</tr>
</tbody>
</table>

VI. LITERATURE REVIEW

Choras et al. [12] proposed an integrated colour, shape and texture characteristic removal system where Gabor filtration is used for opting for the areas of interest quantity (ROIs). They calculated elements of colour and texture from the ROIs based on threshold Gabor facets and histograms, color moments in YUV house, and form facets headquartered on the Zernike moments. The features provided proved to be efficient in making a choice on the similarity between image.
Jain and Singh [13] provided content material functionality overview centered image retrieval programs through combining benefits of HC and divide and overcome k-Menas approach. He proposed HDK procedure to use both HC and Divide benefits and overcome k-means with the aid of introducing equivalency and suitable relation standards.

Singha and Hemachandran [14] exhibited the CBIR utilizing features like surface and color, called Wavelet Based Color Histogram Image Retrieval (WBCHIR). The surface and color elements are extricated through wavelet change and color histogram and blend of these features is strong to scaling and objects interpretation in an image. He likewise showed a promising and quicker recovery technique on a WANG picture database having 1000 common-purpose color images.

Pinjarkar et al.,[15] talked about different systems utilized as a part of the exploration range of CBIR methods utilizing Relevance Feedback. To enhance the retrieval execution of the CBIR the Relevance feedback manner will also be included in CBIR approach to acquire the greater values of the general estimation parameters used for CBIR evaluation approach which can lead to higher outcome of retrieval efficiency. He additionally mentioned various relevance suggestions procedures for content established image Retrieval programs, the more than a few parameters used for experimental systems estimate and the these methods analysis on the foundation of their results.

NitishBarya et.al [3] In this review paper, we focused on a survey of different methods of CBIR to improve the performance of image retrieval system. Also, this paper gives a review of the works carried out, in eliminating the semantic gap between the low level features and the concepts of high level semantic. Fuzzy color histogram is one of the appropriate method of image retrieval over conventional color histogram method and further SVM- RBF (Radial basis function) can be used to reduce the semantic gap and improve the retrieval performance. But due to creation of vast amount of digital images, users are not satisfied with the current image retrieval techniques. Hence further improvement is required to increase the image retrieval quality. A key aspect of this survey is to suggest a system that, in addition to use of existing low level features combine with new feature to match images that may give better result.

Rajinder Kauret.al [16] In early era, to search image text based image retrieval techniques were used but those were not applicable for large scale databases because of text description problems. In present methodology acquisition, transmission, storing, and manipulation are permitted on bigset of images. With the expansion in prominence of the network and advancement of multimedia technologies, users are not fulfilled by the customary data retrieval procedures. So these days, the substance based image retrieval is turning into a wellspring of definite and fast retrieval. CBIR is a system which utilizes visual elements of image, for example, color, shape, texture and so on to hunt user required images from expansive image database as indicated by users solicitations as an query image. The feature extraction technique has been applied for image segmentation using HSV and RGB. In this paper first we review the building of CBIR system based on color features in RGB and HSV color space and compare both method.

This paper elucidates extraordinary proposed ways and strategies utilized through researchers. It propagates the importance of content situated image retrieval methods. The perfect goal of CBIR methods is to extract the points like form, colouround image texture from database and examine it with the question image with a view to retrieve the wanted image. Additional approaches and tactics are in progress to make content centered image retrieval process extra powerful and efficient. This overview specializes in content material founded implementations of image retrieval, usability and challenges. It additionally supplies conceptual overview of methodology.

VII. PERFORMANCE MEASUREMENT

A. Euclidean Distance (ED)
It is defined as the displacement of a pixel from the nearest background point. The equation of ED is[14].

\[D = \sum (A_i - B_j)^2 \]

B. Chi Square Distance
The ED between the components of profiles, on which weighting is defined (weight means the inverse of its frequency), is called the chi-square distance. The equation is as: [14].

\[\chi^2 = \sum \frac{1}{a + j} \left[\frac{a_{ij}}{a + j} - \frac{a_{ij}}{a + j} \right]^2 \]

C. Weighted Euclidean Distance (W.E.D):
Multiply squared differences by corresponding weights are known as Weighted Euclidean Distance. The formula of W.E.D is[14]

\[dx,y = \sqrt{\sum_{j=1}^{i} \frac{1}{\sum_{j=1}^{i} X_j - y_j}} \]

D. Performance Parameter
Evaluation of retrieval process is a crucial problem in CBIR. Different methods are used for measuring performance of retrieval system. The most common performance parameters are Precision and Recall.

E. Precision
Precision rate is defined as a ratio of various retrieve relevant images similar to the query to the total number of retrieved images in response to query[1][10][11].

© 2016, IJARCSSE All Rights Reserved
F. Recall

Recall rate is defined as a ratio of number of retrieve relevant images similar to the query to the total number of relevant images presented in the database[1][10][11].

\[
\text{Recall} = \frac{\text{The number of relevant images retrieved}}{\text{Total number of images in database}}
\]

VIII. CONCLUSIONS

In this paper, we have compared various feature extraction methods of texture, color, and shape that are most commonly used in image understanding studies. Our comparison present that there is considerable performance variability between numerous feature extraction approaches. One of the features of this study is the use of a publicly presented benchmark that further studies can use.

REFERENCES