A Survey of Scheduling Algorithms in Real Time Systems
Wamika Basu*, Subho Chaudhuri
Department of Computer Science, Birla Institute of Technology, Mesra, Kolkata Campus, India

Abstract—A system is said to be a real time system if it produces logically correct results within a specified time called deadline. Real time systems may be Hard or Soft. A hard real time system must always meet the deadline to avoid a catastrophe. For example, if an antimissile system is not able to detect an incoming missile within few seconds, it may lead to loss of human life. If a soft real time system does not meet the deadline, it merely results in poor performance of the system. For example, if during online video streaming, the audio data packets arrive late and are not in synchronization with the video, one will simply have a bad viewing experience. Scheduling in real time systems determines the order in which real time tasks should be executed such that they meet their deadlines. This paper reviews the work done by various researchers in the field of real time scheduling. This paper also presents an analytical study of a few real time scheduling algorithms.

Keywords—Real time system, Deadline, Hard, Soft, Scheduling

I. INTRODUCTION
The proper functioning of a real time system depends on both the timeliness and correctness of the outputs [1], [2] defines the terms real and time separately. According to [2], the word real in real time implies that the system must respond to external events as and when they crop up. The word time implies that the effectiveness of the system depends on the time at which the results are produced in addition to being correct. [3] states that a real time system must respond to external inputs within a time limit to avoid failure. The application of real time systems can be found in Robotics, Pacemakers, Chemical Plants, Antimissile Systems, and Embedded Systems etc. to name a few [4].

II. THE REAL TIME TASK MODEL
In general, a task is said to be a program in execution [5]. A real time task has the following parameters [2, 4]-
- Release time - This is the time at which a task is ready to be executed. It is also known as arrival time.
- Start time - The time at which the task begins to execute is known as start time.
- Finish time - The time at which the task completes its execution is called finish time.
- Worst-case Computation time - This is the time taken by the processor to complete the execution of a task without any intervention.
- Absolute deadline - It is the instant of time within which a task must finish its execution.
- Relative deadline - It is the time interval between release time and absolute deadline.

III. TYPES OF REAL TIME TASKS
There are three types of real time tasks-
- Periodic - A periodic task occurs after fixed intervals of time. Most real time tasks are periodic.
- Sporadic - A sporadic task occurs at random instants of time.
- Aperiodic - Aperiodic tasks occur at random instants of time with a minimum inter-arrival time between any two consecutive instances of the task.

IV. SCHEDULING
In real time systems, process scheduling refers to the order of execution of real time tasks so that they do not miss their deadlines. During the early 1970’s, several real time scheduling algorithms were extensively studied. This paper analyzes a few widely used existing real time scheduling algorithms.
A few important terms related to real time scheduling are [6]-
- Utilization (Processor utilization) - It refers to the fraction of time spent by the CPU in executing a set of tasks.
- Schedulability Test - It is a test to determine whether the tasks can meet their deadlines.
- Optimal Scheduler - If a set of tasks cannot be scheduled by an optimal scheduler, then it cannot be feasibly scheduled by any other scheduler. Tasks are said to be feasibly scheduled if all of them meet their deadlines.

V. HARD REAL TIME SCHEDULING ALGORITHMS
Hard real time scheduling algorithms can be of two types [2]-
A. Fixed Priority Scheduling Algorithms- RM and DM

1) Rate Monotonic (RM) [5, 7, 8, 9, 10, 11]: The Rate Monotonic algorithm is an optimal static priority algorithm with preemption. It schedules periodic tasks with deadline equal to period. Each task is assigned a fixed priority inversely proportional to period. This implies that a task with a shorter period has a higher priority. A set of n tasks will always meet their deadlines when scheduled according to the rate monotonic approach if,

\[\text{Utilization (U)} = \sum_{i=1}^{n} \frac{C_i}{P_i} \leq n \left(\frac{1}{n} - 1 \right) \quad \text{where} \quad C_i = \text{worst-case computation time}, \quad P_i = \text{period} \]

2) Deadline Monotonic (DM) [12, 13]: The Deadline Monotonic algorithm is an optimal static priority algorithm with preemption. It schedules periodic tasks with deadline less than or equal to period. Each task is assigned a fixed priority inversely proportional to relative deadline. This implies that a task with a shorter relative deadline has a higher priority. The rate monotonic algorithm is a special case of the deadline monotonic approach when deadline is equal to the period.

B. Dynamic Priority Scheduling Algorithm- EDF

1) Earliest Deadline First (EDF) [5, 8]: The Earliest Deadline First algorithm is an optimal dynamic priority algorithm with preemption. It schedules periodic tasks with deadline equal to period. Each task is assigned a fixed priority inversely proportional to absolute deadline. This implies that a task with a shorter absolute deadline has a higher priority. A set of n tasks will always meet their deadlines when scheduled according to the earliest deadline first approach if,

\[\text{Utilization (U)} = \sum_{i=1}^{n} \frac{C_i}{P_i} \leq 1 \quad \text{where} \quad C_i = \text{worst-case computation time}, \quad P_i = \text{period} \]

VI. LITERATURE SURVEY

The following is a comparative survey of hard real time scheduling algorithms with respect to –

A. Advantages and Disadvantages (TABLE I)

B. Various parameters like priority assignment, scheduling criterion, constraint, CPU utilization, optimality and type of task scheduled (TABLE II)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Monotonic (RM)</td>
<td>• Simple to implement</td>
<td>• Difficult to schedule aperiodic and sporadic tasks</td>
</tr>
<tr>
<td></td>
<td>• Commonly used algorithm</td>
<td>• Not optimal when deadline ≠ period</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• When DM fails, RM will always fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does not guarantee full processor utilization</td>
</tr>
<tr>
<td>Deadline Monotonic (DM)</td>
<td>• When RM fails, DM will produce a feasible solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Can schedule both periodic and sporadic tasks</td>
<td></td>
</tr>
<tr>
<td>Earliest Deadline First (EDF)</td>
<td>• Less context switches</td>
<td>• During overload condition cannot predict which tasks will miss their deadlines</td>
</tr>
<tr>
<td></td>
<td>• Full processor utilization</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Algorithm</th>
<th>Priority Assignment</th>
<th>Scheduling Criterion</th>
<th>Constraint</th>
<th>CPU Utilization</th>
<th>Optimality</th>
<th>Type of task scheduled</th>
</tr>
</thead>
<tbody>
<tr>
<td>[12, 13]</td>
<td>Deadline Monotonic</td>
<td>Fixed</td>
<td>Relative deadline</td>
<td>Deadline less than or equal to period</td>
<td>More than Rate Monotonic</td>
<td>Optimal static priority algorithm when deadline less than or equal to period</td>
<td>Periodic & Sporadic</td>
</tr>
<tr>
<td>[10, 11]</td>
<td>Rate Monotonic</td>
<td>Fixed</td>
<td>Task Period</td>
<td>Deadline equal to period</td>
<td>Less</td>
<td>Optimal static priority algorithm when deadline equal to period</td>
<td>Periodic</td>
</tr>
<tr>
<td>[8, 14]</td>
<td>Earliest Deadline First</td>
<td>Dynamic</td>
<td>Absolute Deadline</td>
<td>Deadline equal to period</td>
<td>High</td>
<td>Optimal dynamic priority algorithm when deadline equal to period</td>
<td>Periodic</td>
</tr>
</tbody>
</table>
VII. CONCLUSIONS

The study and survey of some existing hard real time scheduling algorithms has been done in this paper. It has been observed that deadline is the most important concept in real time systems and a yardstick to measure the performance of real time scheduling algorithms. A few important hard real time scheduling algorithms have been studied and a comparison between them has been presented.

Based on the survey, it can be concluded that dynamic priority scheduling algorithms result in 100 percent CPU utilization. Fixed priority scheduling algorithms are easier to implement and hence widely used.

Rate Monotonic is an optimal static priority algorithm whereas Earliest Deadline First is an optimal dynamic priority algorithm. Deadline Monotonic is an optimal static priority algorithm when deadline is less than or equal to period.

REFERENCES