Abstract— Agriculture is the backbone of India and agriculture research is required for sustainable and modern agriculture. India is the agricultural country and the rural India is depends on the agriculture. In India, many organisations are working for research and development in agriculture. For sustainable agriculture, statistical analysis on the research data is most important. With the use of computer in agriculture sector, statistical analysis becomes easier. These software are very easy, gives fast result and are reliable. Statistical analysis is used for analysis of agricultural research data. Many softwares have been used since the use of computer in agriculture. This research paper is the study of statistical software used by the agricultural scientists in agriculture research for analysis of data.

Keywords— Statistical Analysis, Software, Agricultural Research, Data Analysis, IASRI, WASP, MS-Excel

I. INTRODUCTION

India has the total geographical area of 328.73 million hectors and Indian Agriculture is dependent on total sown area of 141.58 million hectors (46.3% of total area). With limited available land resources Indian Agriculture have to feed 1.267 billion (126.7 crore) Indian population. In India there are more than 1,00,000 agricultural scientists working for agricultural research and development. Most of the agricultural scientists are working in Indian Council of Agricultural Research (ICAR), State Agricultural Universities (SAUs), Krishi Vigyan Kendras (KVKs), Council of Scientific and Industrial Research (CSIR), IITs, Central and State Government departments, Private Companies, NGOs, etc. ICAR is the premier research organisation for co-ordinating, guiding and managing research and education in agriculture including horticulture, fisheries and animal sciences in the entire country. With 99 ICAR institutes and 65 agricultural universities spread across the country this is one of the largest national agricultural research systems in the world. Rural population and agricultural workers have been increased from 97.2 million in 1951 to 263 million in 2011 out of 1210.2 million population of India. Food grains production have been increased from 50.82 million ton in 1951 to 255.36 million ton in 2012-13. Agriculture is the backbone of India and agriculture research is required for sustainable and modern agriculture. Statistical analysis is used for analysis of agricultural research data. Many software have been used since the use of computer in agriculture.

II. STATISTICAL ANALYSIS FOR AGRICULTURAL RESEARCH

Statistical analysis is an important tool to extract as much information as possible from the given data. Statistical computing methods enable to answer quantitative biological questions from research data and help plan new experiments in a way that the amount of information generated from each experiment is maximized. Widespread use of computers and specialized high end statistical software packages have helped and greatly improved the ability of researchers to analyze and interpret voluminous data. Developments in computerized statistical analysis have enhanced the ability of researchers to come up with better conclusions. This has helped in improving their statistical, computer-related and networking skills of the researchers. For exploiting and sustaining these developed skills, availability of proper computing and infrastructure facilities to agricultural research in National Agricultural Research System (NARS) is of utmost consequence for improving their skills. The statistical computing support would be useful in improving the quality of agricultural research and make it globally competitive and acceptable by way of publications in International refereed Journals. The present project, therefore, targets at providing technical support on the component of statistical computing by applications of general purpose statistical software package that help in undertaking appropriate, sophisticated and computationally involved statistical analysis of data keeping in mind also the accuracy and precision of analysis. It is expected to create a healthy statistical computing environment for the benefit of the scientists in NARS by way of providing advanced, versatile, and innovative and state-of-the art high end statistical packages and enable them to draw meaningful and valid inferences from their research.

There are many softwares which are used by the agricultural scientists in agriculture research for statistical analysis of their research data. Some examples of statistical softwares used are analysis functions and tools in
III. STATISTICAL ANALYSIS FUNCTIONS AND TOOLS IN MS-EXCEL SOFTWARE

There are so many functions in Microsoft Excel Software which are used for Statistical Analysis on the agricultural research data by the agricultural scientists in India. It is very easy and simple to operate and to get the result.

Statistical functions in MS – Excel software with its purpose

Some of the functions mostly used by the agricultural scientists are given below:

(i) Average : Calculates the arithmetical mean or average of the values in a specified range
(ii) Mean : Calculates the mean of the given data
(iii) Stdev : Calculates the standard deviation of the given data
(iv) Max : Gives the maximum value within the range specified
(v) Count : Counts how many numbers are there in the list of arguments
(vi) Var : Finds the variance of the given data
(vii) Correl : Find the correlation between two data sets
(viii) Ttest : Finds the student’s t-test of the given data
(ix) Binomdist : Binomial distribution probability
(x) Chidist : One tailed probability of chi-squared distribution
(xi) Ftest : F-test
(xii) Prob : Probability
(xiii) Ztest : One tailed P value of a z – test, etc.

Statistical Analysis Tools

Microsoft Excel provides a set of data analysis tools— called the Analysis Tool Pak— that you can use to save steps when you develop complex statistical, agricultural analysis, scientific or engineering analyses. You provide the data and parameters for each analysis; the tool uses the appropriate statistical or engineering macro functions and then displays the results in an output table. Some tools generate charts in addition to output tables. Related to worksheet functions, Excel provides many other statistical, financial, and engineering worksheet functions. Some of the statistical functions are built-in and others become available when you install the Analysis Tool Pak.

Data Analysis Tools

- ANOVA: Single factor
- ANOVA: Two-Factor with replication
IV. STATISTICAL SOFTWARE DEVELOPED BY IASRI

Indian Agricultural Statistical Research Institute, New Delhi have designed and developed so many softwares for agricultural education, research, extension and administration. The software developed by IASRI are available in packages, online facility. Some statistical software and facilities available in them are given below:

SPAR 2.0/3.0: Statistical Package for Agricultural Research data analysis (SPAR 3.0) is useful for the analysis of experimental research data in Plant Breeding and Genetics. The package consists of eight modules (i) Data Management (ii) Descriptive Statistics (iii) Estimation of Breeding values (iv) Correlation and Regression Analysis (v) Variance and Covariance Components Estimation (vi) Stability Analysis (vii) Multivariate Analysis (viii) Mating Design Analysis.

SPAD: Statistical Package for Augmented Designs (SPAD) is useful for designing agricultural experiments conducted for comparing existing practices / check varieties, called controls, with new practices / varieties / germplasm collections, called tests, where the experimental material for the tests is limited and it is not possible to replicate them in the design. The package generates a randomized layout of an augmented randomized complete block (RCB) design and augmented complete block design with equal or unequal block sizes. The optimal replication number of the control treatments in every block is obtained by maximizing the efficiency per observation for making tests vs controls comparisons. User has a flexibility to choose the replication number of the control(s) in each of the blocks. The package generates randomized layout of the design as per the procedure of Federer (1956), which is generally overlooked while conducting such experiments. The package also performs the analysis of data generated from augmented block designs (complete or incomplete). The treatment sum of squares is partitioned into different components of interest viz. (i) among test treatments, (ii) among control treatments and (iii) among test treatments and control treatments. Multiple comparison procedures for making all possible pairwise treatment comparisons can also be employed through this package. A null hypothesis on any other contrast of interest can also be tested.

SPFE 1.0: Statistical Package for Factorial Experiments generates the designs for symmetrical and asymmetrical factorial experiments with and without confounding. It also generates the randomized layout of the designs for factorial experiments. The design is generated on listing the independent interactions to be confounded. It also generates fractional factorial plans for symmetrical factorial experiments. The data generated through these designs are analyzed as per usual procedure of designs for single factor experiments. Contrast analysis is carried out to obtain the sum of squares of main effects and interactions. A null hypothesis on any other contrast of interest can also be tested. This package, besides being useful for the experimenters in the NARS, will be quite useful for teaching of Design and Analysis of Factorial Experiments in the classroom.
SPBD Release 1.0: Statistical Package for Balanced Incomplete Block Designs enables a user to select and generate a randomized layout of Balanced Incomplete Block (BIB) Design. The package generates BIB designs with replication numbers up to a maximum of 20 for asymmetric BIB designs and 30 for symmetric BIB designs. The package also provides the analysis of variance with both treatments adjusted and blocks adjusted sum of squares, adjusted treatment means, variance of the estimated treatment contrasts and the contrast sum of squares, etc. The definitions of the terminology used are available on-line. The package is useful for the experimenters, classroom teaching as well as for the researchers in Statistics with special interest in Design of Experiments. or computing genetic parameters for one-way and two-way classified data.

SPAB2.0: Statistical Package for Animal Breeding (SPAB2.0) has been developed keeping in view, the computing requirements of scientists/students, mainly working in Animal Breeding and Animal Genetics research. The package is Window based, Menu driven and works in a User friendly manner. In the present version of the package, 37 useful programs of maximum utility are included. These programs have been grouped into ten modules. It has provisions for Analysis of Mixed Model Data as provided in LSML Package developed by Walter R. Harvey, Best linear unbiased prediction (BLUP) for Single traits, Best linear unbiased prediction (BLUP) for multiple traits, Adjustment for different non-genetic effects, Sire evaluation using SRLS and Sire evaluation using REML. Computation of Mean and SE for different classifications, Genetic parameters for half sib data, Genetic parameters for Full sib data, Coefficient of Repeatability and Producing Ability. It provides computation of Selection Index (Hazel’s Method) Restricted Selection Index, Sire Indices for different models, Osborne's index, Cunningham’s Selection Index. Diallel analysis can be performed for data with unequal classifications, for different modeling situations viz., Analysis of complete 3 x 3 non-orthogonal Diallel crosses data, Analysis of complete 4 X 4 or above non-orthogonal Diallel cross data with or without pure breds, Analysis of 4 X 4 or above non-orthogonal Diallel cross data without reciprocals and pure breeds. One can calculate Inbreeding coefficient, Genetic Gain and Genetic trend. Multivariate Analysis has programs for D Square analysis, Multiple Regression Analysis (Step-up / Step-down methods, all possible combinations) and Principal Component Analysis. Most of the Non-Parametric tests can also provided in the package. Help is provided and it is having a User Manual which one can study and use. This package can aid in teaching the subject of statistical genetic to the post-graduate students and helpful for the researchers in statistics with interest in animal sciences.

SSDA1.0: Software for Survey Data Analysis (SSDA 1.0) is useful for the analysis of survey data. SSDA analyzes the data collected using systematic, simple random sampling (SRS), probability proportional to size (PPS), stratified, cluster, two stage and stratified two stage sampling schemes. It provides the estimates of population mean, variance and design efficiency of the sampling scheme in comparison to the simple random sampling without replacement. It also provides descriptive statistics of the data without consideration of sampling design i.e. measures of central tendency like mean and median and measures of dispersion like range, variance, coefficient of variation, skewness and kurtosis. The software is completely menu driven and guides users step-by-step through data analysis process. It also has the facility to impute missing data, if any, using commonly used imputation methods. This package is an aid in teaching the subject of statistical genetic to the post-graduate students and is also helpful to the researchers in statistics with interest in animal sciences.

SSDA2Web: Software for Survey Data Analysis (SSDA 2.0) is a web-based tool that provides the analysis of variance with both treatments adjusted and blocks adjusted sum of squares, adjusted treatment means, variance of the estimated treatment contrasts and the contrast sum of squares, etc. The definitions of the terminology used are available on-line. The package is useful for the experimenters, classroom teaching as well as for the researchers in Statistics with special interest in Design of Experiments. or computing genetic parameters for one-way and two-way classified data.

V. ONLINE ANALYSIS OF DATA AT IASRI

The following data analysis facilities are available online for agricultural scientists of NARS in India. The website www.iasri.res.in can be used for online statistical analysis:

<table>
<thead>
<tr>
<th>Web Based Generation and Analysis of Partial Diallel Crosses</th>
<th>http://nabg.iasri.res.in/webpdc/login.aspx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented Block Design Analysis</td>
<td>http://www.iasri.res.in/spadweb/default.aspx</td>
</tr>
<tr>
<td>Survey Data Analysis</td>
<td>http://nabg.iasri.res.in/ssda2web/</td>
</tr>
<tr>
<td>IP Authenticated Portal for Indian NARS Users</td>
<td></td>
</tr>
<tr>
<td>SPAR 3.0</td>
<td>http://iasri.res.in/spar/</td>
</tr>
<tr>
<td>Analysis of Row Column Design</td>
<td>http://iasri.res.in/css/Home.aspx</td>
</tr>
<tr>
<td>Web Generation of Experimental Designs Balanced for Indirect Effects of Treatments</td>
<td>http://iasri.res.in/webdbie</td>
</tr>
<tr>
<td>Web Solution of Estimation of Compound Growth Rate</td>
<td>http://iasri.res.in/cgr</td>
</tr>
<tr>
<td>Statistical Package for Factorial Experiments (SPFE Web Ver 2.0):</td>
<td>http://iasri.res.in/spfe/home.aspx</td>
</tr>
<tr>
<td>Online Decision Tree Classification using C4.5 (ODTC4.5)</td>
<td>http://proj.iasri.res.in/odtc</td>
</tr>
<tr>
<td>Web Based Fuzzy Clustering Software (wFCM)</td>
<td>http://proj.iasri.res.in/wfcm</td>
</tr>
<tr>
<td>Web generation of polycross designs (webPD)</td>
<td>http://design.iasri.res.in/webpd</td>
</tr>
</tbody>
</table>
ICAR-Central Coastal Agricultural Research Institute is one of the research institutes established under Indian Council of Agricultural Research (ICAR), New Delhi. This institute has designed and developed the web based statistical software for online data analysis. WASP is the first Web Based Agricultural Statistics Software Package. This package is for the researchers who are not comfortable with standalone statistical packages. Easy to use features of this pack provide comfort and confidence to the researchers in analysing their own data. This little effort is dedicated to the great statisticians who made agricultural research more meaningful. It has the facility for finding the results for Basic Statistics viz. Descriptive statistics, T-Test, Chi Square Test, Correlation, Regression, Experimental Designs, One Sample T test, Two Sample T test, Paired T test, Completely Randomised Design, Randomised Block Design, Latin Square Design, Factorial Experiments, Split Plot Design, Strip Plot Design, Two Factor Factorial Experiment, Three Factor Factorial Experiment. It has the special feature for advanced data entry through text area, making use of the data already entered in any spread sheet program or from text files and comprehensive help on data entry format for all statistical methods.

VII. CONCLUSIONS

There are many softwares which are used by the agricultural scientists in agriculture research for statistical analysis of their research data. Examples of statistical softwares used are analysis functions and tools in MS-Excel, SPAR, SPAB, SPBD, SPAD, SPFE, SPDA, SYSTAT, MSTAT, WASP, Online analysis of data, Web access statistical packages, etc. These softwares uses statistical formulas and convert to software for data input, processing and output or result. The data
analysis result of statistical softwares are very fast, accurate, reliable, storage and saves lot of time of agricultural scientists. It does not require to do all the calculations manually which are complex, critical, time consuming and always prone to error. It has the facility for finding the results for Basic Statistics viz. Descriptive statistics, T-Test, Chi Square Test, Correlation, Regression, Experimental Designs, One Sample T test, Two Sample T test, Paired T test, Completely Randomised Design, Randomised Block Design, Latin Square Design, Factorial Experiments, Split Plot Design, Strip Plot Design, Two Factor Factorial Experiment, Three Factor Factorial Experiment. It has the special feature for advanced data entry through text area, making use of the data already entered in any spread sheet program or from text files and comprehensive help on data entry format for all statistical methods. Nowadays, almost all agricultural scientists are using computer and statistical softwares for their research data analysis.

REFERENCES