Survey on MANETS

Meenu Punj, Tanupreet Singh
Deptt of Computer Science & Engg.
Amritsar College of Engg & Tech,
Amritsar, Punjab, India

Abstract: The quick growth in network multimedia equipments have allow additional real-time digital services such as video-conferencing, online games and distance education to grow to be the conventional internet tasks. These services frequently necessitate the fundamental system to provide multicast facility. The multicast describes the distribution of structures from just one single node to number of destinations. These real-time services have a stringent necessity of QoS factors like bandwidth, delay, jitter etc. to ensure clean, consistent, and fair sign to the receivers. In this paper, a survey on various MANET protocols has been done and a comparative analysis has also been presented. It has been found that none of the protocol is very much efficient for all challenges. So the paper has been concluded with a future scope to overcome these issues.

Keywords: MANETS, Routing Protocols

I. INTRODUCTION

A portable ad-hoc network is a collection of mobile nodes forming an ad-hoc network without the assistance of any centralized structures. These networks introduced a fresh art of network establishment and could be perfect for an environment where either the infrastructure is lost or where deploy an infrastructure is not very cost effective. The most popular IEEE 802.11 “WI-FI” protocol is capable of providing ad-hoc network facilities at low level, when no access point is available. However in this instance, the nodes are limited by send and receive information but do not route anything throughout the network. Mobile ad-hoc networks can operate in a standalone fashion or may be attached to a bigger network including the Internet. Mobile ad-hoc networks can turn the dream of getting connected “anywhere and at any time” into reality. Typical application examples add a disaster recovery or a military operation. Not bound to specific situations, these networks may equally show better performance in other places. As an example, we would ever guess several peoples with laptops, in a business meeting at a location where no network services is present. They are able to easily network their machines by forming an ad-hoc network. That is one of the numerous examples where these networks may possibly be used.

Fig 1: MANETS

Mobile ad hoc network nodes are furnished with wireless transmitters and receivers using antennas, which may be highly directional (point-to-point), Omni directional (broadcast), probably steer able, or some combination there of [1]. At certain stage, based on positions of nodes, their transmitter and receiver coverage patterns, communication power levels and co-channel interference levels, an instant connectivity in the form of a random, multihop graph or “ad hoc” network exists on the list of nodes. This ad hoc topology may modify as time passes whilst the nodes move or adjust their transmission and reception parameters.

The characteristics of the networks are summarized the following:

a) Communication via wireless means
b) Nodes can perform the roles of both hosts and routers
c) Bandwidth-constrained, variable capacity links
d) Energy-constrained Operation
e) Limited Physical Security
f) Dynamic network topology
g) Frequent routing updates

II. PROBLEMS IN ROUTING WITH MANETS

i). Asymmetric links: All the wired networks depend on the symmetric links which are always fixed. But this is simply not a case with ad-hoc networks whilst the nodes are mobile and constantly changing their position within network

ii). Routing Overhead: In wireless ad hoc networks, nodes often change their location within network. So, some stale routes are generated in the routing table that leads to unnecessary routing overhead.

iii). Interference: Here is the major trouble with mobile ad hoc networks as links come and go with regards to the transmission characteristics, one transmission might restrict another one and node might overhear transmissions of other nodes and can corrupt the total transmission.

iv). Dynamic Topology: Since the topology isn't constant; therefore the mobile node might move or medium characteristics might change. In ad-hoc networks, routing tables must somehow reflect these changes in topology and routing algorithms have to be adapted. Like in a fixed network routing table updating takes place for every single 30sec. This updating frequency may be very low for ad-hoc networks.

III. LITERATURE SURVEY

D.Zheng et al. [1] proposed a game theory way of quantitatively analyze the attack strategies of the attacker so as to make rational decision on relay selection and the authentication parameter adaptation to reach the trade-off between security and Quality of Service (QoS) in CO-MANETs. Simulation results had shown the effectiveness of the proposed approach for security and QoS co-design in CO-MANETs. Cooperative communication has been proposed to form a virtual MIMO system through strategic relay selection to boost communication quality in wireless networks, including mobile ad hoc networks (MANETs). Due to their unorganized and decentralized infrastructure, MANETs with cooperative communications (CO-MANETs) were at risk of attacks initiated on relays. Although encryption and authentication protocols may prevent compromised data transmission whenever a selected relay has attacked, their cost was high. P.C.Tsou et al. [2] proposed a DSR based secure routing protocol named BDSR (Baited-Black-hole DSR). The BDSR detected and avoids the black hole attack centered on merging proactive and reactive defense architecture in MANET using the virtual and non-existent destination address to bait the malicious node to reply RREP. Due to its easy deployment features, in addition to utilized in personal area networks, home area networks and so on. Specially, MANETs suit for military operations and the emergent disasters rescue that want to overcome terrain and special purpose in urgent. Nevertheless the dynamical network topology of MANETs, infrastructure-less property and lack of certificate authority make the security problems of MANETs need to pay more attention. S.Wong et al. [3] formulated a story graph optimization problem, called Minimal Gateway Assignment Problem, and proved so it was NP-hard. Nonetheless, they provided efficient algorithms to fix this issue with varying quantities of complexity and coordination. First, they provided a centralized polynomial-time algorithm that is 2-approximable, and a distributed algorithm. Second, by simulation, they revealed that their centralized and distributed algorithms could perform near the optimal. They also reported an appealing result that cooperation has been the key factor to create optimal outcomes - an easy algorithm with tight cooperation among MANETs give far better outcomes than the usual smart algorithm with loose cooperation. I.K.Tabash et al. [4] proposed a fuzzy inference system based on the factors of expected throughput and actual throughput to dynamically adjust the congestion window size that cause improvement in the performance of TCP in MANETs. This proposed scheme didn't count on any explicit feedback from the network, it required only the sender side modifications. The simulation study of the ad hoc network in this work was pertaining to equal sharing of network bandwidth among multiple TCP flows. Through extensive simulations, the authors had shown that how many concurrent flows significantly affects the TCP performance. The proposed scheme achieved the specified goals of improved performance compared to other TCP variants. A. Kumar et al. [5] proposed conceptually a new protocol for MANETs for minimizing maintenance overhead and consequently improving the performance. MANETs consist of nodes which can act as a hub along with host. With the advancement in movement of nodes the configuration of network keeps on changing. This creates new issues in the dynamically changing scenario of routes and you have to devise for effective mechanisms and deployment for determining new routes in the network. Many routing protocols have been devised adhering to their perspective point of view. R. Song et al. [6] proposed a link layer anonymous access protocol (LAA) to be able to provide strong security and anonymity protection for tactical MANETs. The protocol used dynamic pseudonyms as network and node identities for network access authentication to avoid tracking, tracing, and other common attacks. It used a localized key management mechanism for local shared key and broadcast key establishment that outperformed the connectivity and efficiency of key management in RSN and other link layer security technologies such as for example SEAMAN. Simulations revealed that LAA had merely a small effect on end-to-end delay and no effect on packet delivery ratio in accordance with the conventional MAC, meanwhile providing anonymous communication, better protection and improved connectivity performance in the hyperlink layer for tactical MANETs. N.M. Chacko et al. [7] outlined several routing algorithms in MANETs. Mobile AdHoc Networks (MANETs) includes a wide selection of applications, which range from everyday cell phone application to mission critical military applications. MANETs have proved their necessity and the simple setting up networks. Thus MANETs are extremely popular for scenarios which are sensitive and urgent like disaster relief, military applications, etc. As the application form of MANETs increases, the attacks on MANETs also increase. A vast range of research has been conducted to keep routing
in MANETs robust and secure. Among the major research area is routing privacy. Many routing solutions were proposed to keep up privacy. Location aided routing has a book idea; in which routing was done based on location information, therefore node identity was not revealed. J.Gao et al. [8] demonstrated the potential application of the Quasi-Birth-and-Death process (QBD) theory in MANETs delay analysis by making use of it to the end-to-end delay modeling in broadcast-based two-hop relay MANETs. They first demonstrated that the QBD theory actually enabled a book and powerful theoretical framework to be developed to efficiently capture the complicated network state transitions in the concerned MANETs. They revealed that with the help of the theoretical framework, they were able to analytically model the actual expected end-to-end delay and also the actual per node throughput capacity in such MANETs. Extensive simulations were further provided to validate the efficiency of their QBD theory-based models. P. Zhao et al. [9] described that power heterogeneity has been common in mobile ad hoc networks (MANETs). With high-power nodes, MANETs can improve network scalability, connectivity, and broadcasting robustness. However, the throughput of power heterogeneous MANETs may be severely impacted by high-power nodes. To address this matter, they presented a loose-virtual-clustering-based (LVC) routing protocol for power heterogeneous (LRPH) MANETs. To explore the benefits of high-power nodes, they developed an LVC algorithm to construct a hierarchical network and to get rid of unidirectional links. To reduce the interference raised by high-power nodes, they developed routing algorithms to prevent packet forwarding via high-power nodes. Via the mix of analytical modeling, simulations, and real-world experiments, they demonstrated the potency of LRPH on improving the performance of power heterogeneous MANETs.

Y.Chen et al. [10] studied the actual throughput capacity under a far more realistic and practical network model for MANETs, where network nodes randomly relocate a continuous unit square without cell-partition and a slotted ALOHA protocol has been adopted for medium access control. For the considered ALOHA MANETs (A-MANETs), they first determined its exact throughput capacity on the basis of the successful transmission probability (STP) and also derived the expected end-to-end delay for a capacity achieving routing algorithm. Then they developed efficient closed-form approximations to both the STP and the actual throughput capacity in the concerned A-MANET under a popular local transmission scheme, based on that your corresponding capacity optimization issue has been explored. Finally, simulation and numerical results were provided to validate the efficiency of their capacity model and to illustrate their theoretical findings. M. Gharib et al. [11] proposed a new probabilistic key management algorithm for large-scale MANETs. To the best of these knowledge, this is the very first method which probabilistically used asymmetric cryptography to control the keys in MANETs. In this algorithm, they stored only some keys in each node rather than all. They analytically proved that the network will remain linked to a higher probability more than 99.99%. Furthermore, they analytically calculated the average path length in the network and showed that this parameter would not have an important increment employing their algorithm. All analytical results were also validated by simulation to create them dependable. W.Liu et al. [12] proposed a generalized i.i.d. mobility model, in which each node moves once after each and every time slots, and remained static between two moves. To investigate the TD trade-off beneath the g.i.i.d. model, they developed a book multi-relay multi-hop (MRMH) scheme that exploited the opportunities of multi-hop transmissions once the network has been static. Furthermore, allow the multi-hop transmissions, they constructed a new percolation highway system that has not been utilized in the TD trade-off analysis for MANETs. Using the proposed MRMH scheme, they developed and proved constructive bounds for throughput and delay in MANETs with various scales of f. Their constructive bound was asymptotically optimal for f = 1. H. Dahshan et al. [13] proposed a trust based threshold cryptography revocation scheme for MANETs. Within their proposed scheme, the master private key was to split into n pieces in accordance with a random polynomial. Each node in the proposed scheme was configured with a before joining the network. Meanwhile, the master private key could be recovered by combining any threshold t pieces predicated on Lagrange interpolation. Consequently, the proposed scheme improved the safety levels in MANETs. The proposed hop-by-hop certificate revocation scheme was predicated on both threshold cryptography and transitive trust between mobile nodes. Due to the decentralized nature of these proposed schemes, it enabled a group of legitimate nodes to do fast revocation of a nearby misbehaving node. The proposed scheme was highly robust in the mobility environment of MANETs. The benefits of the proposed scheme were justified through extensive simulations. S.Tan et al. [14] proposed a mechanism that provided Secure Route Discovery for the AODV protocol (SRD-AODV) in order to prevent black hole attacks. This mechanism required the foundation node and the destination node to verify the sequence numbers in the Route Request (RREQ) and Route Reply (RREP) messages, respectively, predicated on defined thresholds before establishing a connection with a destination node for sending the data. The simulation results using the Network Simulator 2 (NS2) demonstrated an improvement in the ratio of packet delivery for three different environments employing their mechanism as set alongside the standard AODV protocol. A dark hole attack is one kind of malicious attack that can be easily employed against data routing in MANETs. A dark hole node replies to route requests rapidly with the shortest path and the greatest destination sequence number. The black hole node does not need an active route to a specified destination related to it and it drops most of the data packets so it receives. S.N.Mohammad et al. [15] presented for node distribution regarding density, network connectivity and communication time. In accordance with modeled framework they evaluated and compared the performance of three routing protocols, Ad-hoc On-demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Fisheye State Routing (FSR) in MANETs and VANETs using two Mac-layer protocols, 802.11 and 802.11p. They have further modified these protocols by changing their routing information exchange intervals, MOD AODV, MOD DSR and MOD FSR. A comprehensive simulation work has been performed in NS-2 for the comparison of those routing protocols for varying mobilities and scalabilities of nodes. To gauge their efficiency, throughput, End-to-End Delay (E2ED) and Normalized Routing Load (NRL) of those protocols were taken under consideration as performance parameters. After extensive simulations, they observed that AODV outperformed both with MANETs and VANETs.
Chen et al. [16] proposed a P2P content-based file sharing system, namely SPOON, for disconnected MANETs. The machine used an interest extraction algorithm to derive a node’s interests from its files for content-based file searching. For efficient file searching, SPOON groups common-interest nodes that frequently meet with each other as communities. It took benefit of node mobility by designating stable nodes, which had probably the most frequent contact with community members, as community coordinators for intracommunity searching, and highly mobile nodes that visit other communities frequently as community ambassadors for intercommunity searching. An interest-oriented file searching scheme has been proposed for high file searching efficiency. Additional strategies for file prefetching, query-completion, and loop-prevention, and node churn consideration were discussed to help expand boost the file searching efficiency. They first tested their system on the GENI Orbit tested with a genuine trace and then conducted event-driven try out two real traces and NS2 simulation with simulated disconnected and connected MANET scenarios. The test results revealed that their system significantly lowered transmission cost and improved file searching success rate compared to current methods. S. Chadli et al. [17] made an intensive analysis of existing attacks. Because of this they proposed a new system to classify attacks predicated on attributes that be seemingly the best classification criteria to generate test-cases. They also applied the classification tree method (CTM) to choose test-cases to attack. Finally, they used the CTE (Classification Tree Editor) tool to generate and select test-cases. Because of the flexibility given by their dynamic infrastructure MANETs were vulnerable to various kinds of security attacks. Furthermore, many conventional security solutions has been developed. However, these proposals suffered from the difficulties of tests and evaluations. Among these solutions the intrusion detection systems (IDS). To improve the quality of protection of MANETs given by intrusion detection systems (IDS), they provided assessment of detection and test procedures far better

IV. GAPS IN LITERATURE

The review has shown that the majority of algorithms has the following limitations.

1. Ant colony algorithm: The main limitation of the ant colony based technique is that it converges at low speed in the initial stages and requires more time and energy to converge. This happens as a result of incorrect choice of the initial parameter. The expense also increases as a result of merging and pruning of the trees.

2. Genetic algorithm: The genetic based technique doesn’t promise to find a global optimum. It happens often once the populations have plenty of subjects.

3. Particle swarm optimization: Nevertheless, its performance depends upon the amount of particles produced. Still another problem of the PSO technique is the integration of multicast trees.

V. COMPARISON ANALYSIS

<table>
<thead>
<tr>
<th>Routing class</th>
<th>Proactive</th>
<th>Reactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability of route</td>
<td>Always available</td>
<td>Determined when needed</td>
</tr>
<tr>
<td>Control Traffic Volume</td>
<td>Usually high</td>
<td>Lower than proactive routing protocols</td>
</tr>
<tr>
<td>Storage Requirements</td>
<td>High</td>
<td>Depends on the number of routes kept or required. Usually lower than proactive protocols</td>
</tr>
<tr>
<td>Delay level</td>
<td>Small since routes are predetermined</td>
<td>Higher than proactive</td>
</tr>
<tr>
<td>Scalability problem</td>
<td>Usually up to 100 nodes.</td>
<td>Source routing protocols up to few hundred nodes. Point-to-point may scale higher</td>
</tr>
<tr>
<td>Handling effects Of mobility</td>
<td>Occur at fixed intervals. DREAM alters periodic updates based on mobility</td>
<td>Usually updates ABR introduced LBQ (Local Broadcast Query) AODV uses local route discovery</td>
</tr>
<tr>
<td>Security Support</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Quality of service Support</td>
<td>Mainly shortest path as the QoS metric</td>
<td>Few can support QoS , Although most support shortest path</td>
</tr>
</tbody>
</table>

VI. CONCLUSION AND FUTURE SCOPE

A Mobile Adhoc Network is an accumulation of independent mobile nodes that will communicate together via radio waves used in military battlefield, collaborative work local level, personal area network and commercial sector. In this paper, a survey on various MANET techniques has been done. Moreover, various challenges have been discussed in field of Manets. From the survey it has been evaluated that no technique is much efficient for these challenges. In near future, to overcome the constraints of the earlier work a new improved technique can be proposed which will remove the issue of multi-cast tree using clustering based technique.

REFERENCES


