Bearing Fault Detection of an Induction Motor Using Non-Stationary Signal Analysis

Vinay Kumar Singh
M.E. Student (EE)
NITTTR, Chandigarh, India

Dr. S. Chatterji*
Professor and Head (EE)
NITTTR, Chandigarh, India

Dr. Lini Mathew
Associate Professor (EE)
NITTTR, Chandigarh, India

Abstract—This paper presents a review of the researches done on fault detection and tolerant control, main aim of the fault tolerant control and fault detection of induction motor is used the wavelet transform. Wavelet transform is much better tool for the fault diagnosis point of view and a overview of the wavelet types (continuous and discrete), machine faults detection methods and their validation. The software, generality of codes, one dimensional and two dimensional DWT and frequency characteristics components of healthy as well as faulty induction motor has explained. So Finally, stator short winding, shaft fault, bearing fault, rotor broken bar and open winding are taken as a case study to show the better diagnosis of fault by using wavelet techniques.

Keywords—Wavelet, induction motor, fault diagnosis, fast Fourier transform, fault indicator, fault tolerant control.

I. INTRODUCTION

Induction motor is very important in industries due to many reasons, like low maintenance simple construction, requirement, strong and high reliability like compressors, pumps and fans. Since harmonics are contained in the induction motor that may be used as fault detections in so many fields of the induction motor, it is fact that they it may operate under fault conditions these motor are really important because it is not visible. fault can be seen when it becomes high. There are a lot of techniques which is being used to diagnose the faults of the stator because it is non-invasive properties. There are a lot of mathematical tool used to differentiate a known continuous-time signal to different scale is called as wavelet. The wavelet transform is new technique for fault detection because of it is capable to get information in both frequency domain as well time as it provide a useful method for the fault diagnosis, if it is compared through other signal processing techniques such as Fourier transform. According to the survey of the best review has been presented for fault detection by Andrew et al. (2006). The two main method of fault diagnosis is: (1 a traditional (2 a knowledge based fault diagnosis. Fault detection techniques are combination of feature extraction tool FFT (wavelet), and the motor current signature analysis (MCSA) has been used to get the stator short circuit fault. I present era Wavelet is One of the most suitable module which is being used in both frequency as well as time domain. Wavelet is a very popular due to its multi resolution analysis and having a good time localization. There are so many Signal processing techniques, such as FFT, are work on the several assumption as such as: load, constant stator fundamental frequency and motor speed which is sufficient so it does not being used for nonlinear systems.

Fig 1.1 Cut View of Induction Motor
II. DIFFERENT TYPE OF FAULT ASSOCIATE WITH MOTOR AND THEIR DIAGNOSTIC TECHNIQUES

2.1 Air Gap Eccentricity

Air gap eccentricity is mundane rotor fault of induction machines. This fault engenders the quandaries of vibration and noise. In a salubrious machine, the rotor is center-aligned with the stator bore, and the rotor’s center of rotation is identically tantamount to the geometric center of the stator bore. When the rotor is not center aligned, the unbalanced radial forces unbalanced magnetic pull (UMP) can cause a stator-to-rotor rub, which can result in damage to the stator and the rotor [25, 27]. There are three types of air gap eccentricity [2, 3]:

a) Static eccentricity
b) Dynamic eccentricity
c) Commixed eccentricity

Static eccentricity is a steady pull in one direction which engenders UMP. It is arduous to detect unless special equipment used [2]. A dynamic eccentricity on the other hand engenders a UMP that rotates at the rotational speed of the motor and acts directly on the rotor. This makes the UMP in a dynamic eccentricity more facile to detect by vibration or current monitoring. Actually, static and dynamic eccentricities incline to coexist. Ideal centric conditions can never be postulated. Therefore, an intrinsic grade of eccentricity is implicatively insinuated for any authentic machine. The cumulated static and dynamic eccentricity is called commixed eccentricity as shown in fig. 1.3.

2.2 Bearing Faults

Bearings are prevalent elements of electrical machine. They are employed to sanction rotary kineticism of the shafts. In fact, bearings are single most astronomically immense cause of machine failures. According to some statistical data, bearing fault account for over 41% of all motor failures[12]. A fault in bearing could be imagined as a minute aperture, a pit or a missing piece of material on the corresponding elements. Under mundane operating conditions of balanced load and a good alignment, fatigue failure commences with diminutive fissures, located between the surface of the raceway and rolling elements, which gradually propagate to the surface engendering detectable vibrations and incrementing noise levels. Perpetuated stress causes fragments of the material to break loose, engendering localized fatigue phenomena kenned as flaking [10].

Misalignment of the bearing is additionally a mundane result of defective bearing installation. Regardless of the failure mechanism, defective rolling element bearings engender mechanical vibrations at the rotational speeds of each component. Imagine for an aperture on the outer raceway: as rolling elements move over the defect, they are customarily in contact with the aperture which engenders an effect on the machine at a given frequency. Thus, these characteristic frequencies are cognate to the raceways and the balls or rollers, can be calculated from the bearing dimensions and the rotational speed of the machine.

Bearing consists of two rings called the inner and the outer rings. A set of balls or rolling elements placed in raceways rotate inside these rings as shown in fig 1.4. A perpetuated stress on the bearings causes fatigue failures, customarily at the inner or outer races of the bearings. Minuscule pieces break loose from the bearing, called flaking or spalling. These failures result in rough running of the bearings that engenders detectable vibrations and incremented noise levels. This process is availed by other external sources, including contamination, corrosion, incongruous lubrication, infelicitous installation, and brine ling. The shaft voltages and currents are withal sources for bearing failures. These shaft voltages and currents result from flux perturbation such as rotor eccentricities.
Bearing consists of two rings called the inner and the outer rings. A set of balls or rolling elements placed in raceways rotate inside these rings as shown in fig 1.4. A perpetuated stress on the bearings causes fatigue failures, customarily at the inner or outer races of the bearings. Small pieces break loose from the bearing, called flaking or spalling. These failures result in rough running of the bearings that engenders detectable vibrations and incremented noise levels. This process is availed by other external sources, including contamination, corrosion, incongruous lubrication, incongruous installation, and brine ling. The shaft voltages and currents are additionally sources for bearing failures. These shaft voltages and currents result from flux perturbation such as rotor eccentricities [4].

2.4 Broken Rotor Bar
Induction motor rotors are of two types: cast and fabricated. Previously, cast rotors were only utilized in minuscule motors. However, with the advent of cast ducted rotors, casting technology can be used even for the rotors of motors in the range of 3000 kW. Cast rotors can virtually never be rehabilitated once faults such as broken rotor bars develop in them. Fabricated rotors are generally found in more immensely colossal or special application motors. A cast rotor of induction motor is shown in fig 1.5

A broken rotor bar produces a backward rotating field because of the rotor asymmetry. A broken rotor bar leads to an enhanced field around the fault because of the lack of local demagnetizing slip frequency induced current in these rotor slots. The flux density becomes progressively higher in magnitude close to the fault. The results show that, in case of one broken bar, the degradation in the steady state torque performance is in the order of 2-4%, whereas for three and five broken bars it is between 10-15%, for a motor with 40 rotor bars [10] Environmental stresses caused by for example contamination and abrasion of rotor material due to chemicals or moisture
- Mechanical stresses due to lose laminations, fatigued parts and bearing failure

2.3 Shaft Fault
The rolling element shaft is one of the most critical components in rotating electrical machinery due to the fact that the immensely colossal majority of quandaries arise from faulty shaft. A anterior report [1] on failed components of induction motors has pointed out that the most consequential contributor to bearing failure is inadequate maintenance, and this can, in turn, result in winding failure within the machine. Therefore, opportune monitoring of shaft condition is highly cost efficacious in reducing capital loss. Vibration-predicated monitoring techniques, both in the time and frequency domains, have been widely utilized for detection and diagnosis of shaft defects for several decades. A brief review of vibration monitoring techniques can be found. These methods have traditionally been applied, discretely, in the time and frequency domains. A time-domain analysis focuses principally on statistical characteristics of the vibration signal such as peak level, standard deviation, skew ness, and kurtosis and crest factor. A frequency domain approach uses Fourier methods to transform the time-domain signal to the frequency-domain where further analysis is carried out, conventionally utilizing vibration amplitude and power spectra. It should be noted that utilization of either domain.

2.4 Bearing in Machine
Motor systems are very consequential in modern society. They convert virtually 60% of the electricity engendered throughout the world into other forms of energy to provide power to 57 Other equipment. In the performance of all motor systems, bearings play a paramount role. Many quandaries arising in motor operations are linked to bearing faults. Thus fault diagnosis or condition monitoring of a motor system is inseparably cognate to the diagnosis of the bearing assembly. Due to the close relationship between motor system development and bearing assembly performance, it is arduous to imagine the progress of modern rotating machinery without consideration of the wide application of bearings. In additament, the faults arising in motors are often linked with bearing failures around (40%) . Moreover, according to an IEEE motor reliability study, bearing faults have been shown to be the most frequent faults in induction machines (41%) followed by stator (37%) and rotor faults (10%). In many instances, the precision of the instruments and contrivances used to monitor and control the motor system is highly dependent on the dynamic performance of bearings. Bearing vibration can engender noise and degrade the quality of a product line which is driven by a motor system. Heavy bearing vibration can even cause the entire motor system to function incorrectly, resulting in downtime for the system and economic loss to the customer. Opportune monitoring of bearing vibration levels in a motor system is highly cost efficacious in minimizing maintenance downtime- 2.5 Bearing fault
The fault is postulated to be modelled as a minute aperture engendered from a missing piece of material on the corresponding element. Bearing defects may be categorized as distributed or local. Distributed defects include surface roughness, waviness, and vibration analysis is a conventional method for bearing fault detection.58 Local or wear defects cause periodic impulses in the vibration signals. Amplitude and period of these impulses are resolute by shaft rotational speed, fault location and bearing dimensions. A very consequential aspect of condition monitoring of induction motor is to detect the mechanical faults. The reliability of an induction motor is of paramount consequentiality in industrial, commercial, aerospace and military applications. Bearing play a paramount role in the reliability and performance of all motor systems. Due to close relationship between motor system development and bearing assembly performance, it is arduous to imagine the progress of modern rotating machinery without consideration of the wide application of bearing additament; most faults arising in motors are often linked to bearing faults. The result of many studies show that bearing quandaries account for over 40% of all machine failure [12]. In present chapter, investigations have been done to find the application of advanced signal processing techniques for detection of bearing faults.

2.4 TYPES OF BEARING FAULTS

Monitoring of bearing faults in induction motor using vibration and Bearing fault can be detected by analysing the vibrations in the high frequency spectra. Each type of bearing faults corresponds to a certain vibration frequency. The ball bearing defects can be categorized as outer race defect, inner race defect, ball defect and train defect and the frequencies to detect these faults are given by

The different faults occurring in a rolling element bearing can be classified according to the damaged element as follows and ball bearing detail also shown in figure 5.1

- Inner raceway
- Outer raceway

1.2 SIGNAL PROCESSING TECHNIQUE TO DETECT BEARING FAULT

1.2.1 FAST FOURIER TRANSFORM (FFT)
The discrete Fourier Transform (DFT) one of the most straight mathematical tool for determining frequency content of a time domain signal, it’s inefficient also. As the number of points in the DFT is increased to 50 or hundred, or thousands, necessary number crunching becomes excessive.

1.2.2 SHORT TIME FOURIER TRANSFORM (STFT)
The short time Fourier Transform is the most widely being used for studying non-stationary signals. The main idea of the short time Fourier transform is to decompose up the initial signal into small piece time segments and implement the Fourier transform at each level to get the frequencies that existed in that segment. The totality of such spectrum indicates that the spectrum is varying with time. The limitation of the transform is lies in the impossibility to get finer and finer localization by using smallest window functions. As the time becomes smaller, the information content of the resulting spectrum get decreases.

1.2.3 WAVELET TRANSFORM (WT)

Wavelets are functions that are being used to decompose signals, similar to how to use complex sinusoids in the Fourier transform to decompose signals. The wavelet transform calculate the inner products of the analyzed signal and a family of wavelets. In contrast with sinusoids, wavelets are localized in both the time and frequency domains, so that is why wavelet signal processing is suitable for those signals, whose spectral content changes over time [2].

$$\Psi_{a,b}(t) = \frac{1}{a} \Psi \left(\frac{t-b}{a} \right) \quad (1.1)$$

Let Suppose that signals x(t) gives the exact value

$$\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty \quad (1.2)$$

which implies that x(t) decays to zero.

The wavelet transform, CWT of (\alpha, \beta) of a time signal x(t) can be defined as

$$cwt(\alpha, \beta) = \frac{1}{\sqrt{\alpha}} \int_{-\infty}^{\infty} x(t) \Psi^* \left(\frac{t-b}{\alpha} \right) dt \quad (1.3)$$

where, Ψ^* is an analyzing wavelet and $\Psi(t)$ is complex conjugate of $\Psi(t)$

1.2.4 DISCRETE WAVELET TRANSFORM (DWT)

Unlike the discrete Fourier transform, which is a discrete version of the Fourier transform, the DWT is not exactly a discrete form of the continuous wavelet transform. To implement the DWT, discrete filter banks are used to calculate discrete wavelet coefficients. Two-channel perfect reconstruction (PR) filter banks are most common and easy way to use the DWT [9]. The Signals usually consist of both low-frequency components as well as high-frequency components. Low-frequency component varying slowly with respect to time and it require the fine frequency resolution but coarse time resolution. High frequency components vary rapidly with time and require fine time resolution but coarse frequency resolution. Multi-resolution analysis (MRA) method is used to analyze a signal that contains both low and high frequency components.
III. PROPOSED WORK

3.1 FLOWCHART FOR PROPOSED WORK
(The flow chart given below will illustrate the experimental step follows and executed to obtained the data set for further analysis (fig.4.1).)

Fig. 2 Flow Chart for Carrying out the Proposed Work

IV. RESULTS, DISCUSSION AND ANALYSIS

4.1 EXPERIMENTAL SETUP
In this thesis we have used the single phase induction motor of rating 240 Volt 0.25 Hp current 2 Amp frequency 50 Hz and ADXL335 accelerometer vibration sensors are used get the vibration signals. Further vibration signals are given to the TDS2000C Oscilloscope and it is developed through the LABVIEW. Fig. 6.1 shows the test bench for the fault detection of induction motor.

generate eccentricity in the air gap with mechanical vibrations. The air gap eccentricity causes variation in the air gap flux density that produces visible changes in the vibration signal. These changes are determined in wavelet decomposition of motor due to outer race fault and the outer race faults are diagnosed under no load and load at 500gm conditions by conducting some experiments. The motor is tested with outer race fault of bearing. Initially, the 1.5mm diameter of hole was drilled in the outer race of bearing and then it was installed in the motor. The results obtained from these experiments for Outer Race bearing Fault detection using Wavelet Transform are given below:

4.1 Healthy and Faulty motor at no Load
. The bearing fault diagnosis using wavelet transform is widely used present era. The acquired signals are fed into wavelet toolbox to extract the features present in the signals. so simulation results obtained from the Discrete wavelet transform and FFT Tranform of Healthy bearing at no load are as shown in fig. 6.3 and fig. 6.4 and figure 6.5 and 6.7 shows the full level wavelet decomposition and FFT transform of Faulty bearing at no load.
And from these, we can observe that the final approximation signal of the healthy and faulty motor is completely different. Bearing faults cause specific harmonics in the vibration spectrum of a motor.

Fig. 4.1 Wavelet Decomposition Healthy Motor

Fig. 4.2 FFT Spectrum of Healthy motor at no load

Fig. 4.3 Wave Decomposition of Faulty Motor on 500Gm Load

Fig. 4.4 FFT transform of Faulty Motor at no load
4.2.2 Healthy and Faulty motor at load 500gm

This is the signal acquired at 500gm load are fed into wavelet toolbox to extract the features present in the signals. Wavelet transform is widely used for bearing fault detection. The results obtained from the full level decomposition of healthy motor using Discrete wavelet transform and FFT Spectrum of Healthy as well as faulty motor are shown in fig. 6.7 to fig. 6.9

From this signal, it is observed that the final approximation signal of the healthy and faulty motor is completely different. Bearing faults cause specific harmonics in the vibration spectrum of a motor.

IV. CONCLUSIONS

This research is carried out on two important issues. First, is the fault tolerant control and second, is the wavelet in the induction motors fault diagnosis. There are many conclusions that can be drawn from this paper:

- The improvement of fault detection and diagnosis can be exploited by the wavelet properties to get high detection and diagnostics effectiveness.

ACKNOWLEDGMENT

I am extremely grateful to Mrs. Dr. Lini Mathew, Associate Professor at NITTTR Chandigarh, for giving me invaluable guidance in the area of Health monitoring of an Induction Motor and offering me the opportunity to hold out this study further. It was the essential encouragement that enables me to pursue my work in this area.

REFERENCES

