Review - Technique for Detection of Attack in VANET
Komal B. Sahare, DR. L.G.Malik
Department of Computer Science and Engineering,
G.H.Raisoni College of Engineering
Nagpur,Maharashtra, India-441110, India

Abstract—Vehicular Ad Hoc networks are gaining more and more importance now a day, as it is an emerging and promising technology. The life saving factor is the key issue in this network. An attacker is one who can intentionally change the behaviour of the other Vehicle or Infrastructure in the network, also try to challenge the network with their malicious attacks. Today research has mostly directed the attention on the security of VANET, while to protect the network from attacks the comprehensive solutions still need to be improved, to achieve safety of life need to reach a satisfactory level for the driver and manufacturer. We discuss the various needs for VANET networks which are strongly dependent on their privacy features and security. The main objective of this paper is to study the various attack detection technique and security issues in VANET.

Keywords- Vehicular Ad Hoc Networks, Attacks, Privacy, Security.

I. INTRODUCTION
To create a mobile network A Vehicular Ad-Hoc Network, or VANET is a technology that uses moving cars as nodes in a network. In VANET every participating car turns into a wireless router or node, all cars are approximately 100 to 300 meters of each other to connect and create a network with a wide range. As cars fall out of the signal range and drop out of the network, other cars can join in, so that a mobile Internet is created by connecting vehicles to one another. The first systems that will integrate this technology are police and fire vehicles to communicate with each other for safety purposes.

Dedicated Short Range Communication (DSRC) is used as communication medium and it operates on 5.9GHz frequency band. DSRC is based on IEEE 802.11a standard and IEEE 1609 working group is being standardized as IEEE802.11p for special vehicular communication [1]. Seven channels are provided for safety and non safety applications with 10 MHz bandwidth. DSRC typically provides 6 to 27 Mbps data rate over 1000m communication range [2]. Safety and non safety messages are forwarded between the Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) on this communication medium. Due to the short range of communication wireless medium, cooperation between the vehicles is essential to communicate with each other for safety purposes.

II. ISSUES OF VEHECULAR NETWORKS
VANET suffer from various attacks; these attacks are discussed in the following subsections:

• **Denial of Service Attack**: DoS attacks can be carried out by network insiders and outsiders and renders the network unavailable to authentic users by flooding and jamming with likely catastrophic results. Flooding the control channel with high volumes of artificially generated messages, the network’s nodes, onboard units and roadside units cannot sufficiently process the surplus data.

• **Broadcast Tampering**: An inside attacker may inject false safety messages into the network to cause damage, such as causing an accident by suppressing traffic warnings or manipulating the flow of traffic around a chosen route.

• **Malware**: The introduction of malware, such as viruses or worms, into VANETs has the potential to cause serious disruption to its operation. Malware attacks are more likely to be carried out by a rogue insider rather than an outsider and may be introduced into the network when the onboard units and roadside units receive software and firmware updates.

• **Spamming**: The presence of spam messages on VANETs elevates the risk of increased transmission latency. Spamming is made more difficult to control because of the absence of a basic infrastructure and centralised administration.

• **Black Hole Attack**: A black hole is formed when nodes refuse to participate in the network or when an established node drops out. When the node drops out, all routes it participated in are broken leading to a failure to propagate messages.

• **Masquerading**: Masquerading attacks are easy to perform on VANETs as all that is required for an attacker to join the network is a functioning onboard unit. By posing as legitimate vehicles in the network, outsiders can conduct a variety of attacks such as forming black holes or producing false messages.
• **Replay Attack:** In a replay attack the attacker re-injects previously received packets back into the network, poisoning a node’s location table by replaying beacons. VANETs operating in the WAVE framework are protected from replay attacks but to continue protection an accurate source of time must be maintained as this is used to keep a cache of recently received messages, against which new messages can be compared.

• **Global Positioning System (GPS) Spoofing:** The GPS satellite maintains a location table with the geographic location and identity of all vehicles on the network. An attacker can fool vehicles into thinking that they are in a different location by producing false readings in the GPS positioning system devices. This is possible through the use of a GPS satellite simulator to generate signals that are stronger than those generated by the genuine satellite.

• **Tunneling:** An attacker exploits the momentary loss of positioning information when a vehicle enters a tunnel and before it receives the authentic positioning information the attacker injects false data into the onboard unit.

• **Position Faking:** Authentic and accurate reporting of vehicle position information must be ensured. Vehicles are solely responsible for providing their location information and impersonation must be impossible. Unsecured communication can allow attackers to modify or falsify their own position information to other vehicles, create additional vehicle identifiers (also known as Sybil Attack) or block vehicles from receiving vital safety messages.

• **Message Tampering:** A threat to authenticity can result from an attacker modifying the messages exchanged in vehicle-to-vehicle or vehicle-to-roadside unit communication in order to falsify transaction application requests or to forge responses.

• **Message Suppression/Fabrication/Alteration:** In this case an attacker either physically disables inter-vehicle communication or modifies the application to prevent it from sending to, or responding from application beacons.

• **Key and/or Certificate Replication:** Closely related to broadcast tampering is key management and/or certificate replication where an attacker could undermine the system by duplicating a vehicle’s identity across several other vehicles. The objective of such an attack would be to confuse authorities and prevent identification of vehicles in hit-and-run events.

• **Sybil Attack:** Since periodic safety messages are single hop broadcasts, the focus has been mostly on securing the application layer. For example, the IEEE 1609.2 standard does not consider the protection of multi-hop routing. However, when the network operation is not secured, an attacker can potentially partition the network and make delivery of event-driven safety messages impossible.

III. RELATED WORK

As security of VANET given increasing attention in recent years, different forms of attack detection technique are studied in the literature.

Stefan Dietzel et al. [11] propose three graph-based metrics to gauge the redundancy of dissemination protocols. By applying metrics to a baseline protocol, a geocast protocol, and an aggregation protocol using extensive simulations. He also point out open issues and applications of the metrics, such as colluding attackers and eviction of attacker nodes based on detected attacks. Results show that Advanced Adaptive Geocast behaves almost optimally from a routing efficiency point of view but fails to offer sufficient redundancy for data consistency mechanisms in many scenarios. The simulated aggregation protocol shows sufficient redundancy to facilitate data consistency checking.

Nikita Lyamin et al. [2] proposed A method for real-time detection of Denial-of-Service (DoS) attacks in IEEE 802.11p vehicular ad-hoc networks (VANETs). The study is focused on the "jamming" of periodic position messages (beacons) exchanged by vehicles in a platoon. Probabilities of attack detection and false alarm are estimated for two different attacker models i.e., Random jamming, ON-OFF jamming.

A. L Toledo and X. Wang et al. [3] Real-time detection of DoS attacks in IEEE 802.11 networks have been studied in [3], where the proposed detection system observes the events happening in the wireless channel and computes how "explainable" occurring of each particular collision is. The method in [3] targets the basic mode of IEEE 802.11 with an arbitrary unicast traffic, which is retransmitted according to the binary exponential backoff algorithm.

A. Hamieh, J. Ben-othman, and L. Mokdad et al. [4] proposed A method to detect the jammers in VANETs with unicast traffic, which is based on linear regression, is proposed in [4]. However, very limited performance evaluation results are reported in [4], e.g. no results on the detection time are given.

The authors [5] proposed an Attacked Packet Detection Algorithm (APDA) which is used to detect the DOS (Denial-of-Service) attacks before the verification time. This minimizes the overhead delay for processing and enhances the security in VANET. The authors [6] try to solve the security problem of Dos attack with the use of OBU. The model relies on the use of OBU which fits on each vehicle node, to make a decision as to deter a DOS attack. The processing unit passes information to the OBU, to switch channels technology (or) to use frequency hopping technique. Four options are available to detect the received messages, after the [6] decision will be sent to the next OBU in the network. Switching options are channel switching, technology switching, FHSS, multiple radio transceivers The authors [7] try to solve the security problems of the Sybil attack detection scheme, which is composed of two complementary techniques. The first one is a localization verification technique, based on receiving signal strength. This technique allows a node to verify the authenticity of another node by locating its future geographical localizations. Compare them to its detected suspect, a second technique [7] is a Sybil detection mechanism, based on the definition of a distinguish ability degree metric. It can be launched individually by every node in the network.

The authors [8] try to solve the problem of the Sybil attack detection based on cryptography in VANET. The proposed schema uses an encryption mechanism to detect attacks and to the four security aspects like authentication,
non-repudiation, privacy, and data integrity are introduced. Every vehicle should make sure of message transmitters authority and authenticate it. Non repudiation allows to access personal information of the vehicle, which helps in recognizing the vehicle in case of any claims and crimes. Vehicles identity information’s should be attached to the messages, so it can be tracked whenever desired and non repudiation is established in the network. Privacy of personal information [8] about the vehicles and the drivers are restricted not be accessible by other vehicles. The anonymity can be preserved to avoid tracking. Data integrity is that the transmitted message can contain valid information not to be altered by attackers.

The authors [9] try to solve the problem of Wormhole Attack detection. The nodes participating in the VANET communication should register on the network. In order to avoid the formation of wormhole in the route, this paper proposes a method in which after the route reply from the destination, the source has a complete list of the intermediate nodes forming the route. The author [9] proposes a scheme in which they use a special packet called Decision Packet. After the route has been set up between a source node and destination node, the former gets the information about all nodes in the path from RREP packet. Which contains all nodes identity take which has been forming route from source to destination node in recent [9] identified path. Every node computes the hash value of the decision packet which is verified at the next node, so there is no chance of alteration of the hop count by the attacker. If an attacker by somehow changes [9] the hop count value it will result in a change, in hash value of the packet will be consequently discarded.

The authors [10] try to solve the problem of a synchronization based DDoS attacks on vehicular communications since a WSM packet contains the time of its transmission, and periodic broadcasts allow delivery of frames at a regular interval; an attacker may successfully guess the timing of subsequent broadcast. An RSU can randomize the schedule of its periodic broadcasts following a normal distribution with original transmission time as the mean, and a predetermined delay as the standard deviation. The intention is to reduce the accuracy of an attacker’s jitter estimate, and diminishing its ability to synchronize with the RSU’s transmission.

In [11] the authors proposed an efficient method called Timestamp Series detection method is used to detect and defend against UDP flooding attacks under different IP spoofing types. The method makes use of a storage-efficient data structure and a Bloom filter based Timestamp Series detection method. This lightweight approach makes it relatively easy to deploy as its resource requirement is reasonably low.

In [12] the authors proposed method to defend denial of sleep attack consists of two parts.
a) Network organization.
Authors propose the following network organization algorithm given Node organization is the first step once the nodes are deployed in the network. Sensor network is built in a tree like structure and organize the nodes. Sink node is at the root of the tree. Each node must know its parent node to which it needs to send packets to reach to sink. Also the parent node must know the child node from which it can receive SYNC packets.
b) Selective Local authentication
There are two different formats for SYNC packet. One is without authentication and other one is with authentication token. During normal operation if the SYNC is under threshold SYNC without authentication is used. If there is a threshold cross over there is a chance of denial of sleep attack and enforces SYNC with authentication token for authentication.

In [13] the authors proposed encryption mechanism to detect attack and provides four security aspects Authentication, Non-repudiation, Privacy, and Data Integrity. This paper presents a method base on cryptography to detect Sybil attack in VANET. Result of simulation shown that Execution time of this algorithm is low, because most operations is done in Certification Authority, so the proposed method is a best method for detection of Sybil attacks.

Public Key Cryptography Security issue of Sybil attacks can be solved by using public key cryptography and authentication mechanism as described in [14, 15]. In this security solution, signatures are combined with digital certificates and asymmetric cryptography is used. Certificates are issued by CA and there is a hierarchy of these CAs. For each region, there is one CA. These CAs communicate with each other through secure channel and keep track of issued certificates used by every signed message. This technique can prevent Sybil attacks as only messages with valid certificates are considered and invalid messages are ignored. The only requirement is that each node should be assigned one certificate at a time. For privacy implementation, these certificates are changed from time-to-time. But in VANETS, it is difficult to deploy PKI as there is no guarantee of the presence of infrastructure. It is very complex, consumes large memory, and time consuming as well.

Timestamp Series This technique, can be used to detect Sybil attack discussed in [16] in this approach, proposed a timestamp series approach to defend against Sybil attack in a vehicular ad hoc network (VANET) based on roadside unit support. It discovers that it would be rare for arbitrary two vehicles to pass through a few different RSUs (far apart from each other) always at the same time. Therefore, if a traffic message sent out by any vehicle contains several timestamps issued to this vehicle by the previously passed RSUs, Sybil attack can be detected if multiple traffic messages contain very similar series of timestamps. This method has challenges, for example If RSUs are located at intersections, it may make the Sybil attack detection difficult, so this method not suitable approach to detect Sybil attack.

In this paper [17], AUTHORS present a novel Message Fabrication Detection mechanism, called MEFAD scheme. This scheme is designed to recognize vehicle-fabricating information in VANETs. This technique is employed in the context of beaconless-based routing so-called contention-based routing (CBR). The approach is to prevent malicious nodes or vehicles from intercepting packets in transmission. This is achieved by allowing moving vehicles to collaborate with each other in order to select a trustworthy vehicle to forward the packets to a destination. Also demonstrates the practical use of solution through many case studies as well as indicate important research directions.
In these authors proposed a DOS attack solution is based on the use of OBU (On Board Unit) that is installed in vehicles. In case of DOS attack the processing unit will suggest to the OBU to switch channel, technology, or to use frequency hopping technique or multiple transceiver [18].

To deal with traffic analysis attack Cencioni et al. [18] proposed VIPER: a vehicle-to-infrastructure communication privacy enforcement protocol. It is resilient to traffic analysis attacks. In this vehicle will send their messages directly to RSU but to have vehicle acting as mix nodes.

In this paper, authors investigate the problem of threshold establishment without globally unique identifier system (GUID). In [19] propose a model threshold as a Kalman filter and provide an algorithm to dynamically update the threshold. By simulations, author investigate the problem of insider attackers that Generate information forgery attacks. Simulation results show that dynamic method suffers from a bootstrapping phase but reduces the percentage of wrong decisions. In [25] an author investigates distributed denial of service attacks using non-address-spoofing flood (NASF) over mobile ad hoc networks (MANET). Detection features based on statistical analysis of IDS log files and flow rate information is proposed. Detection of NASF attack is evaluated using three metrics, including detection ratio, detection time and false detection rate. Thus, the proposed frameworks address important issues in forensic science to identify what and when does the attack occur.

Authors only deal with attacks on the MAC layer. [28] The theoretical network throughput in terms of maximum number of packets transmitted per second will be derived using two dimensional Markov Chain to determine the network capacity, two dimensional Markov Chain is applied using Bianchi’s model to obtain the maximum throughput possible when all users are legitimate and follow the standards

IV. PROPOSED METHODOLOGY

In our proposed method we are designing analysis tool in order to detect attack in VANET. The proposed method works as follows it consists of components: the Traffic Analyzer, the Fuzzification, the Fuzzy Inference Engine, the Knowledge Base, and Forensic Analyzer. Network analyzer provides a means for identifying, preserving, analyzing, and presenting digital evidence for uncovering facts of unauthorized or malicious activities. In practice, the following functions or tasks are carried out in network analysis investigation: network evidence capture, preservation, examination, analysis, visualization and presentation of the results. The analysis process is the meat of the whole network investigation. It aims to gain insight into and reach conclusions about critical questions of network security incident, such as what happened, where, when, how, who was involved, and why [26]. This process involves trend analysis, content clustering, data fusion, correlation, pattern reorganization and detection of traffic abnormality. Generally, there are two broad categories to which digital evidence collected in network analysis investigation belongs captured network traffic and data maintained by network devices. As a major source of evidences, the data maintained by network devices include log files, configuration settings, routing tables and etc. The capture of live traffic from a network (For example, packet sniffing on an Ethernet segment) is also considered a source of network evidence. An attacker might be able to erase all log files on a compromised host; captured network traffic might therefore be the only evidence available for forensic analysis when dealing with a skilled attacker.

V. CONCLUSIONS

Thus, there are different techniques that can detect the attack but Security expert or forensic investigator analyzes the network traffic using the empirical knowledge. There is no rule to perfectly distinguish attack from network traffic. Thus, there is need of more efficient attack detection system which will analyse the network traffic and provide a security to the VANET network by detecting various attack’s the Fuzzy Inference Engine one of the fastest searching engine thus in future we design an fuzzy algorithm for detect ion of various attack.

REFERENCES

