Color Image Matching Techniques Using Various Features

Vinky * Rajneet kaur
Student Masters of Technology Assistant Professor & Head of Department of
Department of CSE Computer Science and Engineering
Sri Guru Granth Sahib World University Sri Guru Granth Sahib World University
Fatehgarh Sahib, Punjab, India Fatehgarh Sahib, Punjab, India

Abstract--- Comparing images, or image patches, is the desired goal in several computer vision applications. This paper shows a study of various image matching and retrieval criteria for colored images using various features.

Keywords--- Color Image matching and retrieval, RGB contrast, Maximum Frequency, Minimum Frequency, Shape, Texture, Relativity, Sorting, Histogram Pattern.

I. Introduction
Color matching is a method in image processing of color adjustment of two images using the image features. The matching contains the two steps which are given below:-

A. Feature Extraction: The first step in the process is extracting image features to a distinguishable extent.
B. Matching: The second step involves matching these features to yield a result that is visually similar.[1]

Now, in this paper we use these two steps for matching of color images. In section II we explain the methodology used. In section III contains conclusion and future scope.

II. Dataset
In our paper, we will consider different formats of images. We take 700 images of jpeg format, 150 .png images, 150 bmp images for matching.

III. Methodology Used And Implementation
For implementation we used the MATLAB platform.

A. FILL DATASET
Firstly we upload the dataset which we have created. It consists of different format of images like .jpg, .png, .bmp etc.
B. QUERY IMAGE
Then we load the query image in MATLAB from the dataset which we have uploaded in the current directory.

C. FEATURE EXTRACTION
For matching of color images we require some features so that the matching becomes easier. So, we extract some features like Image texture, Histogram Pattern[5], Size Matrix, Color contrast[4], Angle, Side lobes, RGB contrast, Shape, Relativity, Wavelet transformation, Normalized L2, Relative Deviation [3]. Matching is done for each feature.
D. RESULT COUNT
Select the result count, it will select the maximum number of images to be returned as result.

E. SORTING
In this task, the goal is to sort an array of elements using the bubble sort algorithm. The elements must have a total order and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. The bubble sort is generally considered to be the simplest sorting algorithm. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal $O(n^2)$ performance, it is not used often for large (or even medium-sized) datasets.

The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it. If the first value is greater than the second, their positions are switched. Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them). Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass. A Boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits [2].

F. RETURNED IMAGES
After sorting, Best Matched images are retrieved from the given Dataset.

IV. Conclusion And Future Scope
The dramatic rise in the sizes of images databases has stirred the development of effective and efficient retrieval systems. We have researched various modes of representing and retrieving the image and found there is not any efficient method for matching different format of images like .png, .bmp. So we conclude that we can also match the other formats.
The application performs a simple color-based search in an image database for an input query image, using color histograms and different features. It then shows the best matched images and we can also check the matching on different features like shape, color contrast, texture etc. In future, the researcher can increase the dataset with different format of images like .gif, .tiff, and can also extract the different features for image matching like information gain, gabor etc.

References