LIKE Search on Meta Search Engine

Mr. Biraj Patel*, Dr. Dipti Shah
G H Patel Post Graduate
Department of Computer Science and Technology,
Sardar Patel University,
Vallabh Vidyanagar, India

Abstract - Existing meta search engine uses logical ranking approach in terms of displaying search result on screen with no user input for ranking. They basically send request for links on fixed number of search engines and retrieve results and display aggregate result on screen based on ranking method with no user input. In existing meta search engine there is no availability of user choice facility for rating search results. There is a need to have ranking method which can work dynamically. This paper discusses the need of dynamic ranking of search results in a meta search engine and discusses a model, which allows user to rate search results. And then after the meta search engine will update rank of search results to generate aggregate result according to rating rank.

Keywords - meta search engine; LIKE search; dynamic ranking; the rating; aggregate results

I. INTRODUCTION

Most of meta search engines return retrieved results in group based on default logical rank with no user input. They send request to fixed number of individual search engines may be two, three, or more. But they do not provide facility to input choice of user (User Like / Unlike) to available resultant links on screen for calculating rank. Meta search engine should provide local system intelligibility to its users. From a user’s point of view, such a intelligibility means that a meta search should result with dynamic ranking formula. That is, when a user submits a query, the user should need to be aware that various search engines may be used to process this query, and when the user receives the search result from the meta search engine, user should know that the results are retrieved from various search engines. Result merging is a necessary task in providing the above intelligibility. When merging the results returned from various search engines into a single result list, pages in the merged result should be ranked in descending order of rated rank. The proposed model of meta search engine allows user to rate search result on output screen of it. Here, default rate of search result is zero. Meta search engine may ask each search engine to return the first a small number of result pages. This method is to return the identical number of pages from each search engine. Because different search engines may contain unlike numbers of useful pages for a given search query, retrieving the identical number of pages from each individual search engine. LIKE search method try to tie the number of search results to display on output screen of meta search engine based on rating score of the meta search engine search results. This can lead with advantage of better ranking formula related to user rate. Search results to be retrieved from meta search engine that are ranked higher or lower ranking counts. For user search query, the database of the meta search engine computes a rank for each search result based on user input.

II. THE MODEL

The model for LIKE search is as below:

1. Start
2. Enter search text on LIKE search web page for search.
4. If search result do not exist in LIKE_merge database then sends request to all search engines. Retrieve search results search engine wise. Store them in separate database.
5. Merge individual search engine database with all retrieved search results and make new database, i.e. LIKE_merge. Initialize each record rating zero at entry time.
6. Display results from LIKE_merge database in descending order of rating on screen.
7. Allow user to rate search result link available on screen by clicking on LIKE or UNLIKE options.
8. Update rating of a record in LIKE_database based on user input either LIKE or UNLIKE.
9. Stop

Fig. 1 LIKE search user input screen on meta search engine
As shown in Fig. 1 meta search engine sends search request to retrieve links based on rated rank for user input search text. Default rank assigned to each search result is zero.

Fig. 2 LIKE search options

Fig. 2 shows search results with Like and Dislike options on screen for rating purpose.

Fig. 3 Like – Unlike bar of Link Evaluated

Fig. 3 shows Like – Dislike values in pictorial form of first search result on screen.
Fig. 4  Rated values of second search result

Fig. 4 shows Like – Dislike values in pictorial form of second search result on screen.

Fig. 5 Change in display order

Fig. 5 shows how search links changes their positions based on user rating.

III. CONCLUSION

Existing meta search engine uses different approach in terms of use of ranking of search results for result order on screen. They basically send request for links on fixed number of search engines and retrieve results and displays aggregate result on screen based on logical ranking with no user input. There is no user’s choice for rating search results. There is no flexibility of using meta search engines in terms of LIKE search. This paper proposes a new method of ranking and search that is LIKE search, which allows user to have a choice of rating search results through interface. And meta search engine retrieves results based on rating rank.
REFERENCES