A Novel Block based Video in Video Watermarking Algorithm using Discrete Wavelet Transform and Singular Value Decomposition

L.Agilandeeswari[1]
School of Information Technology & Engineering, VIT University, Vellore – 632 014, India.

K.Muralibabu[2]
HOD / Department of ECE, Global Institute of Engineering & Technology, Vellore, India.

Abstract — This paper presents a novel video in video watermarking algorithm using Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) based on block selection procedure. Here the level of authentication can be increased by using the two watermarks: one is the original watermark video and the other is the owner’s fingerprint. These two watermarks are embedded into the cover video based on the subband selection scores. From the experimental analysis, we found that the proposed video watermarking technique is more robust to all possible attacks than existing video watermarking technique.

Keywords — Discrete Wavelet Transform (DWT), Singular Value Decomposition (SVD), Authentication, Block selection, Watermark.

I. INTRODUCTION

With the rapid growth of internet technologies as well as digital multimedia processing, a large amount of data is easily accessible to everyone these days. In parallel to the growing diversity in the multimedia applications, technology also facilitated unauthorized copying, tampering, and distribution of digital video. The ease of such manipulations emphasizes the need for data authentication techniques. Therefore, various authentication schemes have recently been proposed for verifying the authenticity of the image, video or text content. The authentication techniques are basically classified as: digital watermark based and digital signature based schemes. A digital signature based technique dealt with either an encrypted or a signed hash value of image contents or image characteristics [1]. This digital signature scheme has its own drawback is that; it can detect the modification of data, but cannot locate the regions where the image has been modified [2]. To solve the problem of locating the region of modification, digital watermarking techniques have been proposed by many researchers [3]. Digital watermarking is a technique which involves two steps: (i) an algorithm to embed small authentication information called watermark content on the host content. (ii) an algorithm to retrieve or extract the embedded watermark with less distortion. Watermarking techniques can be broadly categorized into two groups: spatial domain methods and transform domain methods. The spatial domain methods embed by modifying directly on the pixels of an image [4]. The transform domain method involves modifying the transform domain coefficients [5]. In this paper, we focus on the authentication of video content by embedding watermark video into the cover video, which makes our approach robust against possible attacks. There are several ways to insert watermark data into the video. The simple way involves considering the video as a sequence of still images or frames, and then embeds each watermark frame into each cover frame independently [6]. Here, we proposed a robust and imperceptible video watermarking algorithm combines two powerful mathematical transforms: Discrete Wavelet Transform [7], and the Singular Value Decomposition (SVD) [8]. In addition to this, in order to increase the level of authentication, we also added the fingerprint of the owner at the embedding level and at the receiver end, the same will be compared with the original fingerprint. The proposed scheme involves the following steps at the transmitter and the receiver side as follows: At the sender side, after applying the DWT on the Y component of each frame, find the region of embedding the watermark and fingerprint using the subband selection scores. Then divide the selected subbands into block of size equal to the size of the watermark and the fingerprint. Perform singular value modification on the selected blocks of the subband. At the receiving end, the same fingerprint image and watermark image is extracted by applying the reverse steps as that of the sending side, which is then compared with the original fingerprint image. The resultant match concludes whether the extracted watermark is authenticated or not. The rest of the paper is organized as follows. Section 2 dealt with the related works. Section 3 explains the proposed watermarking scheme. Section 4 shows experimental results. Conclusions and Future Work are given in the Section 5.

II. RELATED WORKS

A numerous video watermarking algorithms have been proposed in either spatial or frequency domain. In this section we discussed some of the famous existing watermarking techniques. Mobasseri [9] proposed spatial domain watermarking on compressed videos. Authors have showed that the possibility of embedding a watermark in the raw...
video and also the possibility of recovering it from the MPEG decoder by exploiting the inherent processing gain of DSSS (Direct Sequence Spread Spectrum). Tsai & Chang [10] proposed a compressed video sequence via VLC decoding and VLC code substitution. They used Watson’s DCT – based video watermarking to achieve better imperceptibility. Novel adaptive approaches to video watermarking have been proposed by Ge et al [11]. In order to guarantee the robustness and perceptual invisibility of the watermark, he uses both intra-frame and inter-frame information of video content. The main advantage of this method is that the extraction of watermark can be done without using the original video, since the embedding was done adaptively based on the signal characteristics and human visual system. The MPEG-based technique for digital video watermarking has been proposed by Hsu & Wu [12]. They embedded watermarks in both intraframe and non-intraframe with different residual masks. The embedding process involves, first the degradation of the original watermark using pixel based permutation and block-based permutation, followed by this embedding can be done in the middle frequency coefficients in DCT domain, which is collected in zig-zag order. The DWT based algorithm proposed by Hong et al [13] where the middle frequencies are modified and a flag is generated for the extraction process. During the extraction process another flag is generated from the watermarked image in order to compare with the original flag. Here, authors used the generated flag as watermark instead of original watermark image. Doerr & Dugelay [14] have proposed video watermarking based on spread spectrum techniques in order to improve robustness. Here each watermark bit is spread over a large number of chip rate (CR) and then modulated by a pseudo-random sequence of binary. This algorithms robustness increases with the increase of the variance of the pseudo-noise sequence. As a result, the increase of (CR) will reduce the embedding rate of watermark information; where as, the increase of variance may result in the perceptibility of the watermark. The wavelet transform based video watermarking scheme was proposed by Liu et al [15] which dealt with embedding multiple information bits into the uncompressed video sequences. The embedding in LL sub-band used for reducing error probabilities of detection of BHC code A new type of watermarking scheme proposed by Niu et al [16] using two-dimensional and three – dimensional multi resolution signal decomposing. The watermark image which is decomposed with different resolution is embedded in the corresponding resolution of the decomposed video. The robustness of watermarking is enhanced by coding the watermark information using the Hamming error correction code. This approach is robust against attacks such as frame dropping, averaging and lossy compression. A novel blind watermark algorithm based on SVD and DCT by Fen Lie et al [17] describes that this algorithm satisfies the transparence and robustness of the watermarking system as well. The experimental results show that this approach is robust against common signal processing attacks. The digital video watermarking algorithm using Principal Component Analysis by Sanjana et al [18] proposed the imperceptible high bit rate watermark. It was robust against various attacks such as filtering, contrast adjustment, noise addition and geometric attacks. Haneih [19] have proposed a multiplicative video watermarking scheme with Semi-Blind maximum likelihood decoding for copyright protection. They first divide the video signal into non-overlapping pixel cubes. Then, the 2D Wavelet transform is applied on each plane of the selected cubes. For extraction, a semi-blind likelihood decoder is employed. This method was robust against linear collusion, frame swapping, dropping, noise insertion, median filtering.

III. PROPOSED WATERMARKING ALGORITHM

The proposed watermarking algorithm is based on the combination of DWT and SVD.

A. DWT

The mathematical tool used for hierarchical decomposition of an image is the Discrete Wavelet transform (DWT). The DWT makes the signal to split into low and high frequency parts. The low frequency part can be split again into low and high frequency parts, while the high frequency parts have only the edge component information. This high frequency components can generally used for watermarking since the human eye is less sensitive to changes in edges. The 1-level Discrete Wavelet Transform decomposes an image into approximation components and the detailed components. The approximation components which is the lower resolution images represents as A11 and the detailed components which is the horizontal, vertical and diagonal components represented by HL1, LH1 and HH1 respectively. The 2 level of 2D-DWT can be computed by applying DWT algorithm on the LL1 which further decomposed the LL1 part in to four sub bands as LL2, HL2, LH2 and HH2. A 2 level 2D-DWT process is shown in the fig.1

B. SVD

The singular value decomposition (SVD) involves the factorization of a real or complex rectangular matrix with many applications in image processing, signal processing and statistics. The SVD (Singular Value Decomposition) for a rectangular matrix A is given as,

\[A = U S V^T \]

where,

- A - m x n matrix
- U, V - orthonormal matrices
C. Color Conversion

The YCbCr color space is widely used in digital video. In that the Y component represents luminance information, and the components CbCr is for color information, where as, the Cb component represents the blue and a reference value differences and the Cr component represents the red and a reference value differences. The expression below shows the RGB to YCbCr color model,

\[
\begin{pmatrix}
Y \\
Cb \\
Cr
\end{pmatrix} = \begin{pmatrix}
16 & 65.481 & 128.553 & 24.966 \\
128 & -37.797 & -74.203 & 112.00 \\
128 & 112.00 & -93.786 & -18.214
\end{pmatrix} \begin{pmatrix}
R \\
G \\
B
\end{pmatrix}
\]

Again, for the transformation of YCbCr to RGB color model is given as,

\[
\begin{pmatrix}
R \\
G \\
B
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 \\
0 & -0.344 & 1.77 \\
1.103 & -0.714 & 0
\end{pmatrix} \begin{pmatrix}
Y \\
Cb \\
Cr
\end{pmatrix}
\]

D. Embedding Algorithm

Step 1: Convert Input Cover Video and Watermark video into frames.

Step 2: Apply RGB to YCbCr Conversion on each Cover video frame.

Step 3: Perform 2-level DWT on Y component of each Cover video frame.

Step 4: Perform subband selection algorithm based on the below formula, the score \(Z_r \) is calculated as:

\[
Z_r = \sum_p \sum_q |x_{(p,q)}|/M_rN_r
\]

where, \(M_r \) and \(N_r \) correspond to dimensions of each coefficient matrix \(x_r \) of subband \(x \) at level \(r \).

Step 5: Choose subbands with top two scores and named as subband1 and subband2.

Step 6: Embedding the Watermark video frame and the Finger print image in the subbands which has highest score and the next highest scores respectively,

(i) Divide the selected subbands into blocks of size equal to the size of the watermark frame and fingerprint image respectively.

(ii) Compute the score for each block using Step 4

(iii) Calculate block based SVD on the highest score block of the selected sub band as
A_i = U_i S_i V_i^T \quad (5)

where, i represents one of the subbands.

(iv) Modify the singular values of the selected block of the subbands with watermark frame and fingerprint image as follows,

\[S'_i = S_i + \alpha W_{ij} \quad (6) \]

where, \(\alpha \) represents robustness factor

\(W_{ij} \) represents jth Watermark frame

\(W_{ij} \) represents Fingerprint image, where j=0 (means same fingerprint image)

Step 7: Reconstruction of modified Subband DWT Coefficient using SVD

\[A_i = U_i S'_i V_i^T \quad (7) \]

Step 8: Obtain the watermarked frame using Inverse DWT

Step 9: Convert the resultant YCbCr Frame to RGB Frame

Step 10: Repeat Step 4 to Step 9 for all the frames.

Step 11: Combine the resultant embedded Frames to get Watermarked Video

E. Extraction Algorithm

Step 1: Convert Watermarked Video into frames

Step 2: Apply RGB to YCbCr Conversion on each frame

Step 3: Perform 2-level DWT on Y component of each Frame

Step 4: Repeat Step 4 and 5 of Embedding algorithm for Subband Selection and block selection.

Step 5: Calculate SVD on the selected block of each sub band.

Step 6: The extracted fingerprint image is compared with the original fingerprint image.

Step 7: If Step 6 is true, the extracted watermark frame from Step 5 is an authenticated watermark else, unauthenticated watermark.

Fig.3 Extraction Algorithm
IV. EXPERIMENTAL RESULTS

The performance of the proposed watermarking technique has been measured in terms of its imperceptibility and robustness against the possible attacks like noise addition, filtering, geometric attacks etc. We used a sample video sequences as ‘rhino.avi’ of length 114 frames as a cover video and two different watermarks as watermark video ‘traf.avi’ with a framesize of 160 X 120 and fingerprint image ‘fingerprint.tif’ of size 250 X 250. Fig. 4(a) and 4(b) shows the original and the watermarked video frames respectively. Fig. 4(c) is the original binary watermark video and fingerprint image and Fig. 4(d) is the extracted binary watermark video and fingerprint image. For embedding the watermark, the scaling factor α is set to 0.08. We used 2 level Daubechies filter coefficients for wavelet decomposition. The choice of mother wavelet can be based either on the cumulative energy over some interval of interest or based on similarity between original and reconstructed image. We choose to select the mother wavelet based on similarity. We used db2 for better reconstruction.

A. Peak Signal-to-Noise Ratio

The Peak Signal-to-Noise Ratio (PSNR) is used as a common measure to evaluate the degradation caused by various attacks. Low PSNR values indicate higher degradation and high PSNR values indicate lower degradation hence high PSNR values indicating that the watermarking technique is more robust to that type of attack. Since we used video sequence to embed the watermarks the average PSNR is calculated. The PSNR between the original video and the attacked watermarked video is calculated using the equation (8) and (9).

$$PSNR = 10 \log_{10} \left(\frac{255^2 \cdot 2}{MSE} \right)$$ \hspace{1cm} (8)

where, Mean Square Error (MSE) between the original frame $O(t)$ and attacked watermark frame $A(t)$ is defined as,

$$MSE = \frac{1}{T} \left(\sum_{t=1}^{T} (O(t) - A(t))^2 \right)$$ \hspace{1cm} (9)

where, T is total number of pixels per frame.

(a) PSNR = 29.1654
(b) PSNR = 24.54021
(c) PSNR = 25.2658
(d) PSNR = 38.6543
(e) PSNR = 29.4165
(f) PSNR = 28.8165
(g) PSNR = 29.3374
Fig. 5. Affected Watermarked Frames by various Attacks and its corresponding average PSNR value
(a) Gaussian attack (b) Poisson Attack (c) Salt and Pepper attack (d) Median Filtering (e) Contrast Adjustment (f) Rotation and (g) Cropping.

The following graphs show the analysis of PSNR in db between original cover video and watermarked video against several attacks such as, gaussian noise, poisson noise, contrast adjustment, median filtering, salt and pepper noise, rotation and cropping.
Fig. 6. Analysis of Peak Signal – to – Noise Ratio between original cover video and watermarked video
(a) Gaussian attack (b) Poisson Attack (c) Salt and Pepper attack (d) Median Filtering (e) Contrast Adjustment (f) Rotation and (g) Cropping

B. Correlation Co-Efficient

The correlation co-efficient is another measure used to measure the robustness of the watermarking algorithm against the possible attacks. Its peak value is 1. If two images are identical then correlation co-efficient value will be 1. If two images are uncorrelated then correlation co-efficient value will be 0. The correlation co-efficient between the original watermark and extracted watermark after possible attack is computed using the Equ. 10.

\[
\text{Correlation Co-Efficient} = \frac{\sum (X_i - X_m)(Y_i - Y_m)}{\sqrt{\sum (X_i - X_m)^2} \sqrt{\sum (Y_i - Y_m)^2}}
\]

where, \(X_i\) the intensity of the \(i\)th pixel in image 1 is, \(Y_i\) is the intensity of the \(i\)th pixel in image 2, \(X_m\) is the mean intensity of image 1, and \(Y_m\) is the mean intensity of image 2.

The correlation coefficient values along with sample extracted watermark and fingerprint images are given in the below table 1,

<table>
<thead>
<tr>
<th>Attack Type</th>
<th>Correlation Coefficient</th>
<th>Extracted Watermark Frame</th>
<th>Extracted Finger Print Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian Noise</td>
<td>0.7677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poisson Noise</td>
<td>0.5125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt and Pepper Noise</td>
<td>0.8050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Filtering</td>
<td>0.8198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast Adjustment</td>
<td>0.5117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td>0.6610</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frame dropping: From the watermarked video sequence dropping one or more frames randomly is known as frame dropping. The quality of the watermarked video will decrease rapidly, if we drop too many frames so in our experiment we drop one frame randomly. Due to embedding the same fingerprint image into each frame of the cover video, dropping one frame randomly will not affect the fingerprint extraction and the chance of missing the corresponding watermark frame is also less, since the size of cover video is double the size of watermark video. We drop maximum \(\frac{n}{2} \), where \(n \) - total number of frames. But the quality of the watermarked video degrades severely.

Frame swapping: The process of switching the order of frames randomly within a watermarked video sequence is known as frame swapping. The quality of the video will degrade, when we swap too many frames. Since we have embedded same watermark in each frame of the cover video, frame swapping will not affect the extraction of all the watermarks.

Frame averaging: Like frame dropping and frame swapping watermark extraction will not be affected by frame averaging, this is true due to the same information embedded in each frame of the cover video.

From the inspection, we found that the proposed watermarking technique is significantly more robust to attacks than the existing watermarking techniques. These finding is summarized in table 2.

TABLE II

COMPARISON OF EXISTING WATERMARKING ALGORITHM WITH OUR PROPOSED APPROACH

<table>
<thead>
<tr>
<th>Type of Attacks</th>
<th>Existing Watermarking Algorithm[18]</th>
<th>Proposed Watermarking Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg.PSNR in ‘db’</td>
<td>Correlation Coefficient</td>
</tr>
<tr>
<td>Gaussian</td>
<td>27.0321</td>
<td>0.7134</td>
</tr>
<tr>
<td>Poisson</td>
<td>24.1342</td>
<td>0.6241</td>
</tr>
<tr>
<td>Salt & Pepper</td>
<td>24.2685</td>
<td>0.7905</td>
</tr>
<tr>
<td>Contrast adjustment</td>
<td>29.0145</td>
<td>0.5017</td>
</tr>
<tr>
<td>Median filtering</td>
<td>35.6041</td>
<td>0.8011</td>
</tr>
<tr>
<td>Cropping</td>
<td>28.3454</td>
<td>0.6506</td>
</tr>
<tr>
<td>Rotation</td>
<td>28.0145</td>
<td>0.6490</td>
</tr>
<tr>
<td>Frame Dropping</td>
<td>25.4353</td>
<td>0.7564</td>
</tr>
<tr>
<td>Frame Swapping</td>
<td>28.3141</td>
<td>0.8392</td>
</tr>
<tr>
<td>Frame Averaging</td>
<td>26.4582</td>
<td>0.7530</td>
</tr>
</tbody>
</table>

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a robust video in video watermarking algorithm for content authentication based on DWT and SVD. The experimental analysis shows that our approach is robust against four kinds of attacks such
as, Noising attack: Gaussian attack, Poisson Attack, Salt and Pepper attack, denoising attack: Median filtering, image processing attack: Contrast Adjustment, geometrical attack: Rotation and Cropping and various video related attacks such as Frame dropping, Frame averaging and Frame swapping. Here, we concentrated on embedding a video i.e., different watermark frames and same fingerprint in all the frames of the cover video. The comparison table.2 shows that our approach is good when compared to the existing watermarks. As a future work, we can go for embedding the watermarks on the frame which doesn’t have any motion by applying the motion estimation algorithms on the cover video, which may helps us in finding the location of embedding.

REFERENCES