A Novel Approach for Image Mixed Noise Reduction Using Wavelet Method

Shajun Nisha
Professor & Head
Department of Computer Science (PG)
Sadakathullah Appa College
Tirunelveli, India

Kother Mohideen
Professor
Computer Science and Engineering
National College of Engineering
Tirunelveli, India

Abstract - The image de-noising naturally corrupted by noise is a classical problem in the field of signal or image processing. Additive random noise can easily be removed using simple threshold methods. De-noising of natural images corrupted by Gaussian noise and Gaussian - Gaussian Mixture using wavelet techniques are very effective because of its ability to capture the energy of a signal in few energy transform values. In this paper decompose the image using discrete wavelet and then applied K-SVD algorithm and threshold for mixed noise removal. The proposed method can efficiently remove a variety of mixed or single noise while preserving the image information well. It is proposed to investigate the suitability of different wavelet bases and the size of different neighborhood on the performance of image de-noising algorithms in terms of PSNR. The experimental results demonstrate its better performance compared with some existing methods.

Keywords - Image, De-noising, Wavelet, Transform, Image denoising, K-SVD, mixed noise

I. INTRODUCTION

Over the past decade, wavelet transforms have received a lot of attention from researchers in many different areas. Both discrete and continuous wavelet transforms have shown great promise in such diverse fields as image compression, image de-noising, signal processing, computer graphics, and pattern recognition to name only a few. In de-noising, single orthogonal wavelets with a single-mother wavelet function have played an important role. De-noising of natural images corrupted by Gaussian noise and Gaussian - Gaussian Mixture using wavelet techniques is very effective because of its ability to capture the energy of a signal in few energy transform values. Crudely, it states that the wavelet transform yields a large number of small coefficients and a small number of large coefficients.

Here the classical Gaussian and Gaussian-Gaussian mixed noise removal problem in this paper, where the noise in the images can be modeled by

\[g = f + n \]

where \(g \), \(f \), \(n \) are the observed image, clean image, and noise, respectively. In the overwhelming majority of literature results, the noise \(n \) is supposed to be a Gaussian distribution.

For Gaussian noise removal, variational method becomes one of the most popular and powerful tools for image restoration since the total variation (TV) was proposed in [1]. The TV/L2 or the so-called ROF model [1] is a classical and well-known model to remove Gaussian noise. However, the results obtained with TV could be over-smoothed and the image details such as textures could be removed together with noise. In order to better preserve the image textures, the nonlocal denoising method was integrated with variational method and the nonlocal TV models in [2], [3]. The nonlocal TV greatly improves the denoising results, but the nonlocal weights in these models may be difficult to determine. Another Gaussian noise removal approach is to use wavelet shrinkage. The high frequency coefficients are suppressed with some given rules such as shrinking. Sparse representation and dictionary learning is also a highly effective image denoising technique. In [4], [5], the authors proposed a novel method to remove additive white Gaussian noise using K-SVD for learning the dictionary from the noisy image with gray scale images.

II. DISCRETE WAVELET TRANSFORM

The Discrete Wavelet Transform (DWT) of image signals produces a non-redundant image representation, which provides better spatial and spectral localization of image formation, compared with other multi scale representations such as Gaussian and Laplacian pyramid. Recently, Discrete Wavelet Transform has attracted more and more interest in image de-noising. The DWT can be interpreted as signal decomposition in a set of independent, spatially oriented frequency channels. The signal \(S \) is passed through two complementary filters and emerges as two signals, approximation and Details. This is called decomposition or analysis. The components can be assembled back into the original signal without loss of information. This process is called reconstruction or synthesis. The mathematical manipulation, which implies analysis and synthesis, is called discrete wavelet transform and inverse discrete wavelet transform. An image can be
decomposed into a sequence of different spatial resolution images using DWT. In case of a 2D image, an N level decomposition can be performed resulting in 3N+1 different frequency bands namely, LL, LH, HL and HH as shown in figure 1. These are also known by other names, the sub-bands may be respectively called a1 or the first average image, h1 called horizontal fluctuation, v1 called vertical fluctuation and d1 called the first diagonal fluctuation. The sub-image a1 is formed by computing the trends along rows of the image followed by computing trends along its columns. In the same manner, fluctuations are also created by computing trends along rows followed by trends along columns. The next level of wavelet transform is applied to the low frequency sub band image LL only. The Gaussian noise will nearly be averaged out in low frequency wavelet coefficients. Therefore, only the wavelet coefficients in the high frequency levels need to be thresholded.

![Wavelet Decomposition Diagram](image)

Fig 1. 2D-DWT with 3-Level decomposition

III. WAVELET BASED IMAGE DE-NOISING

All digital images contain some degree of noise. Image denoising algorithm attempts to remove this noise from the image. Ideally, the resulting de-noised image will not contain any noise or added artifacts. De-noising of natural images corrupted by Gaussian noise using wavelet techniques is very effective because of its ability to capture the energy of a signal in few energy transform values. The methodology of the discrete wavelet transform based image de-noising has the following three steps as shown in figure 2. 1. Transform the noisy image into orthogonal domain by discrete 2D wavelet transform. 2. Apply K-SVD algorithm 3. Apply hard or soft thresholding the noisy detail coefficients of the wavelet transform 4. Perform inverse discrete wavelet transform to obtain the de-noised image.

Here, the threshold plays an important role in the denoising process. Finding an optimum threshold is a tedious process. A small threshold value will retain the noisy coefficients whereas a large threshold value leads to the loss of coefficients that carry image signal details. Normally, hard thresholding and soft thresholding techniques are used for such de-noising process. Hard thresholding is a keep or kill rule whereas soft thresholding shrinks the coefficients above the threshold in absolute value. It is a shrink or kill rule.

![Wavelet Denoising Diagram](image)

Fig 2. Diagram of wavelet based image De-noising

1) **K-SVD Denoising Algorithm:** The K-SVD algorithm will be built upon sparse representations, now the brief review the main mathematical ideas of the K-SVD denoising algorithm. Let \(g, f \in \mathbb{R}^{S1 \times S2} \) be the \(S1 \times S2 \) size noisy and clean images, respectively. To simplify notations, here always use the lowercase letters such as \(g \in \mathbb{R}^{S1 \times S2} \) to represent a column vector by stacking the columns of the matrix \(g \). According to the maximum a-posteriori probability (MAP) estimator and an assumption that each small image patch can be sparsely represented as a linear combination of a redundant learned dictionary. The following steps for the K-SVD algorithm

- Select atoms from input
- Atoms can be patches from the image
- Patches are overlapping
- Replace unused atom with minimally represented signal
- Identify signals that use k-th atom (non zero entries in rows of X)
- Deselect k-th atom from dictionary
- Find coding error matrix of these signals
- Minimize this error matrix with rank-1 approximate from SVD

The above steps are repeated until the path can be sparsely represent for entire image.

A. Probability Density Functions of Mixed Noise

Here additive mixed noise removal via energy minimization method. For real images, the probability density function (PDF) is often not a single standardized distribution such as Gaussian. Thus its MLE is often difficult to solve.
Here we consider the case that the noise is sampled from several different distributions. This mixed noise in images is more difficult to remove than the standardized Gaussian noise. And also described the framework for restoring images corrupted by mixed noise.

Suppose the mixed noise \(n \in R512 \) is constituted by \(M \) different groups \(nl, l = 1, 2, \ldots, M \), each \(s1 \) is some realizations of a random variable \(SI \) with PDF \(p(l)x \), and the ratio of each \(s1 \) is \(rl \). Here \(rl \) satisfies \(M l = 1 \) \(rl = 1 \). Similarly, \(s \) can also be regarded as some realizations of a random variable \(N \) whose PDF is \(p(x) \). With these assumptions, one can get the PDF of mixed noise
\[
p(x) = M l = 1 rl p(l)x \quad \ldots \ldots \quad (2)
\]

B. Threshold Methods

The following are the methods of threshold selection for image de-noising based on wavelet transform.

Method 1: Visushrink
Threshold \(T \) can be calculated using the formula,
\[
T = \sigma \sqrt{2 \log n} \quad \ldots \ldots \quad (3)
\]

This method performs well under a number of applications because wavelet transform has the compaction property of having only a small number of large coefficients. All the rest wavelet coefficients are very small. This algorithm offers the advantages of smoothness and adaptation. However, it exhibits visual artifacts.

Method 2: Neighshrink
Let \(d(i,j) \) denote the wavelet coefficients of interest and \(B(i,j) \) is a neighborhood window around \(d(i,j) \). Also let \(S2 = \Sigma d2(i,j) \) over the window \(B(i,j) \). Then the wavelet coefficient to be thresholded is shrunk according to the formulae,
\[
d(i,j) = d(i,j) * B(i,j) \ldots \ldots \ldots \ldots (4)
\]

where the shrinkage factor can be defined as \(B(i,j) = (1 - T2 / S2(i,j)) + \), and the sign + at the end of the formulæ means to keep the positive value while set it to zero when it is negative.

Method 3: Modineighshrink
During experimentation, it was seen that when the noise content was high, the reconstructed image using Neighshrink contained mat like aberrations. These aberrations could be removed by wiener filtering the reconstructed image at the last stage of IDWT. The cost of additional filtering was slight reduction in sharpness of the reconstructed image. However, there was a slight improvement in the PSNR of the reconstructed image using wiener filtering. The de-noised image using Neighshrink sometimes unacceptably blurred and lost some details. So that it has been processed by K-VSD algorithm and then threshold for the shrinkage the coefficients. In earlier methods the suppression of too many detail wavelet coefficients. This problem will be avoided by reducing the value of threshold itself. So, the shrinkage factor is given by
\[
B(i,j) = (1 - (3/4)*T2 / S2(i,j)) + \ldots \ldots \ldots (4)
\]

IV. EVALUATION CRITERIA

The above said methods are evaluated using the quality measure Peak Signal to Noise ratio which is calculated using the formulæ,
\[
PSNR = 10 \log 10 (255)^2/MSE (db) \ldots \ldots \ldots \ldots (5)
\]

where \(MSE \) is the mean squared error between the original image and the reconstructed de-noised image. It is used to evaluate the different de-noising scheme like Wiener filter, Visushrink, Neighshrink and Modified Neighshrink.

V. EXPERIMENTS

Quantitatively assessing the performance in practical application is complicated issue because the ideal image is normally unknown at the receiver end. So this paper uses the following method for experiments. One original image is applied with Gaussian noise and Gaussian – Gaussian mixed noise with different variance. The methods proposed for implementing image de-noising using wavelet transform take the following form in general. The image is transformed into the orthogonal domain by taking the wavelet transform. The detail wavelet coefficients are modified according to the shrinkage algorithm. Finally, inverse wavelet is taken to reconstruct the de-noised image. In this paper, different wavelet bases are used in all methods. For taking the wavelet transform of the image, readily available MATLAB routines are taken. In each sub-band, individual pixels of the image are shrunk based on the threshold selection. A de-noised wavelet transform is created by shrinking pixels. The inverse wavelet transform is the de-noised image.

VI. RESULTS AND DISCUSSIONS

For the above-mentioned three methods, image de-noising is performed using wavelets from the second level to fourth level decomposition and the results are shown in figure (3) and table if formulated for second level decomposition for different noise variance as follows. It was found that three level decomposition and fourth level decomposition gave optimum results. However, third and fourth level decomposition resulted in more blurring. The higher level of blurred by K-VSD algorithm. The experiments were done using a window size of 3X3, 5X5 and 7X7. So here 7X7 neighborhood window size results are shown.
TABLE 1
COMPARATIVE LENA IMAGE PSNR VALUES

<table>
<thead>
<tr>
<th>Wavelet Type</th>
<th>Threshold Type</th>
<th>Window Size 7x7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Variance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.08</td>
</tr>
</tbody>
</table>

for Different Threshold Methods with Wavelet Domain Image Window Size 7X7 for mixed noise

for Different Threshold Methods with Wavelet Domain Image Window Size 7X7 for mixed noise

VII. CONCLUSION
In this paper, the image de-noising using discrete wavelet transform is analyzed with K-SVD algorithm. The experiments were conducted to study the suitability of different wavelet bases and also different window sizes. Among all discrete wavelet bases, coiflet performs well in image de-noising. Experimental results also show that modified Neighshrink gives better result than Neighshrink, Weiner filter and Visushrink for mixed noise.

REFERENCES

Prof.S.Shajun Nisha has been working As Head in the P.G Department of Computer Science, Sadakathullah Appa College,Tirunelveli. She has completed M.Phil.(Computer Science) and M.Tech (Computer and Information Technology) in Manonmaniam Sundaranar University, Tirunelveli. She has involved in various academic activities. She has attended so many national and international seminars, conferences and presented numerous research papers. She is a member of ISTE and IEANG and her specialization is Image Mining.

Dr. S. Kother Mohideen has been working as a Professor in the Department of Computer Science and Engineering, National College of Engineering, maruthakulam, Tirunelveli. He is also Research convenor of R & D Department. He is obtained M.Tech degree and Ph.D degree from Manonmaniam Sundraranar University, Tiruneveli. He has more than 18 years of teaching and research experience. He has published more than 25 research papers in national and international journals/conferences. He is the member of IEEE and IEANG. His research area includes Image processing, Neural networks and Expert system etc.